新课标高中数学人教A版必修四 2.4.2平面向量数量积的坐标表示、模、夹角 教案.doc

上传人:模** 文档编号:27734990 上传时间:2022-07-25 格式:DOC 页数:3 大小:253KB
返回 下载 相关 举报
新课标高中数学人教A版必修四 2.4.2平面向量数量积的坐标表示、模、夹角 教案.doc_第1页
第1页 / 共3页
新课标高中数学人教A版必修四 2.4.2平面向量数量积的坐标表示、模、夹角 教案.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《新课标高中数学人教A版必修四 2.4.2平面向量数量积的坐标表示、模、夹角 教案.doc》由会员分享,可在线阅读,更多相关《新课标高中数学人教A版必修四 2.4.2平面向量数量积的坐标表示、模、夹角 教案.doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.4.2平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题. 教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1平面向量数量积(内积)的定义: 2两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量.1 ea = ae =|a|cosq; 2 ab ab = 03 当a与b同向时,ab = |a|b|;当a与b反向时,ab = -|a|b|. 特别的aa = |a|2或

2、4cosq = ; 5|ab| |a|b|3练习:(1)已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )A.60 B.30 C.135 D.(2)已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )A.2 B.2 C.6 D.12二、讲解新课:探究:已知两个非零向量,怎样用和的坐标表示?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即2. 平面内两点间的距离公式(1)设,则或.(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)3 向量垂直的判定设,则4 两向量夹角的余弦() co

3、sq =二、讲解范例:例1 已知A(1, 2),B(2, 3),C(-2, 5),试判断ABC的形状,并给出证明.例2 设a = (5, -7),b = (-6, -4),求ab及a、b间的夹角(精确到1o)分析:为求a与b夹角,需先求ab及ab,再结合夹角的范围确定其值.例3 已知a(,),b(,),则a与b的夹角是多少?分析:为求a与b夹角,需先求ab及ab,再结合夹角的范围确定其值.解:由a(,),b(,)有ab(),a,b记a与b的夹角为,则 又,评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题 2、已知A(3,2),B(-1,-1),若点P

4、(x,-)在线段AB的中垂线上,则x= .四、小结: 1、 2、平面内两点间的距离公式 3、向量垂直的判定:设,则五、课后作业:习案作业二十四。思考:1、如图,以原点和A(5, 2)为顶点作等腰直角OAB,使B = 90,求点B和向量的坐标.解:设B点坐标(x, y),则= (x, y),= (x-5, y-2) x(x-5) + y(y-2) = 0即:x2 + y2 -5x - 2y = 0又| = | x2 + y2 = (x-5)2 + (y-2)2即:10x + 4y = 29由B点坐标或;=或 2 在ABC中,=(2, 3),=(1, k),且ABC的一个内角为直角,求k值.解:当A = 90时,= 0,21 +3k = 0 k = 当B = 90时,= 0,=-= (1-2, k-3) = (-1, k-3)2(-1) +3(k-3) = 0 k = 当C = 90时,= 0,-1 + k(k-3) = 0 k =

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁