《大学全册高等数学知识材料点(全).doc》由会员分享,可在线阅读,更多相关《大学全册高等数学知识材料点(全).doc(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.*大学高等数学知识点整理公式,用法合集极限与连续一. 数列函数: 1. 类型: (1)数列: *; * (2)初等函数: (3)分段函数: *; *;* (4)复合(含)函数: (5)隐式(方程): (6)参式(数一,二): (7)变限积分函数: (8)级数和函数(数一,三): 2. 特征(几何): (1)单调性与有界性(判别); (单调定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 二. 极限性质: 1. 类型: *; *(含); *(含) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 4. 性质: *有界性, *保号性, *归并性三. 常用结论: , , ,
2、, , , , , 四. 必备公式: 1. 等价无穷小: 当时, ; ; ; ; ; ; ; 2. 泰勒公式: (1); (2); (3); (4); (5).五. 常规方法: 前提: (1)准确判断(其它如:); (2)变量代换(如:) 1. 抓大弃小, 2. 无穷小与有界量乘积 () (注:) 3. 处理(其它如:) 4. 左右极限(包括): (1); (2); ; (3)分段函数: , , 5. 无穷小等价替换(因式中的无穷小)(注: 非零因子) 6. 洛必达法则 (1)先”处理”,后法则(最后方法); (注意对比: 与) (2)幂指型处理: (如: ) (3)含变限积分; (4)不能用
3、与不便用 7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小 8. 极限函数: (分段函数)六. 非常手段 1. 收敛准则: (1) (2)双边夹: *, * (3)单边挤: * * * 2. 导数定义(洛必达?): 3. 积分和: , 4. 中值定理: 5. 级数和(数一三): (1)收敛, (如) (2), (3)与同敛散七. 常见应用: 1. 无穷小比较(等价,阶): * (1) (2) 2. 渐近线(含斜): (1) (2),() 3. 连续性: (1)间断点判别(个数); (2)分段函数连续性(附:极限函数, 连续性)八. 上连续函数性质 1. 连通性: (注:, “平均”值:) 2
4、. 介值定理: (附: 达布定理) (1)零点存在定理: (根的个数); (2). 第二讲:导数及应用(一元)(含中值定理)一. 基本概念: 1. 差商与导数: ; (1) (注:连续) (2)左右导: ; (3)可导与连续; (在处, 连续不可导; 可导) 2. 微分与导数: (1)可微可导; (2)比较与的大小比较(图示);二. 求导准备: 1. 基本初等函数求导公式; (注: ) 2. 法则: (1)四则运算; (2)复合法则; (3)反函数三. 各类求导(方法步骤): 1. 定义导: (1)与; (2)分段函数左右导; (3) (注: , 求:及的连续性) 2. 初等导(公式加法则):
5、 (1), 求:(图形题); (2), 求: (注: ) (3),求及 (待定系数) 3. 隐式()导: (1)存在定理; (2)微分法(一阶微分的形式不变性). (3)对数求导法. 4. 参式导(数一,二): , 求: 5. 高阶导公式: ; ; ; 注: 与泰勒展式: 四. 各类应用: 1. 斜率与切线(法线); (区别: 上点和过点的切线) 2. 物理: (相对)变化率速度; 3. 曲率(数一二): (曲率半径, 曲率中心, 曲率圆) 4. 边际与弹性(数三): (附: 需求, 收益, 成本, 利润)五. 单调性与极值(必求导) 1. 判别(驻点): (1) ; ; (2)分段函数的单调
6、性 (3)零点唯一; 驻点唯一(必为极值,最值). 2. 极值点: (1)表格(变号); (由的特点) (2)二阶导() 注(1)与的匹配(图形中包含的信息); (2)实例: 由确定点“”的特点. (3)闭域上最值(应用例: 与定积分几何应用相结合, 求最优) 3. 不等式证明() (1)区别: *单变量与双变量? *与? (2)类型: *; * *; * (3)注意: 单调性端点值极值凹凸性. (如: ) 4. 函数的零点个数: 单调介值六. 凹凸与拐点(必求导!): 1. 表格; () 2. 应用: (1)泰勒估计; (2)单调; (3)凹凸.七. 罗尔定理与辅助函数: (注: 最值点必为
7、驻点) 1. 结论: 2. 辅助函数构造实例: (1) (2) (3) (4); 3. 有个零点有个零点 4. 特例: 证明的常规方法:令有个零点(待定) 5. 注: 含时,分家!(柯西定理) 6. 附(达布定理): 在可导,使:八. 拉格朗日中值定理 1. 结论: ; () 2. 估计: 九. 泰勒公式(连接之间的桥梁) 1. 结论: ; 2. 应用: 在已知或值时进行积分估计十. 积分中值定理(附:广义): 注:有定积分(不含变限)条件时使用 第三讲: 一元积分学一. 基本概念: 1. 原函数: (1); (2); (3) 注(1)(连续不一定可导); (2) (连续) 2. 不定积分性质
8、: (1); (2); 二. 不定积分常规方法 1. 熟悉基本积分公式 2. 基本方法: 拆(线性性) 3. 凑微法(基础): 要求巧,简,活() 如: 4. 变量代换: (1)常用(三角代换,根式代换,倒代换): (2)作用与引伸(化简): 5. 分部积分(巧用): (1)含需求导的被积函数(如); (2)“反对幂三指”: (3)特别: (*已知的原函数为; *已知) 6. 特例: (1); (2)快速法; (3)三. 定积分: 1. 概念性质: (1)积分和式(可积的必要条件:有界, 充分条件:连续) (2)几何意义(面积,对称性,周期性,积分中值) *; * (3)附: , ) (4)定
9、积分与变限积分, 反常积分的区别联系与侧重 2: 变限积分的处理(重点) (1)可积连续, 连续可导 (2); ; (3)由函数参与的求导, 极限, 极值, 积分(方程)问题 3. 公式: (在上必须连续!) 注: (1)分段积分, 对称性(奇偶), 周期性 (2)有理式, 三角式, 根式 (3)含的方程. 4. 变量代换: (1), (2) (如:) (3), (4); , (5), 5. 分部积分 (1)准备时“凑常数” (2)已知或时, 求 6. 附: 三角函数系的正交性: 四. 反常积分: 1. 类型: (1) (连续) (2): (在处为无穷间断) 2. 敛散; 3. 计算: 积分法
10、公式极限(可换元与分部) 4. 特例: (1); (2)五. 应用: (柱体侧面积除外) 1. 面积, (1) (2); (3); (4)侧面积: 2. 体积: (1); (2) (3)与 3. 弧长: (1) (2) (3): 4. 物理(数一,二)功,引力,水压力,质心, 5. 平均值(中值定理): (1); (2), (以为周期:) 第四讲: 微分方程一. 基本概念 1. 常识: 通解, 初值问题与特解(注: 应用题中的隐含条件) 2. 变换方程: (1)令(如欧拉方程) (2)令(如伯努利方程) 3. 建立方程(应用题)的能力二. 一阶方程: 1. 形式: (1); (2); (3)
11、2. 变量分离型: (1)解法: (2)“偏”微分方程: ; 3. 一阶线性(重点): (1)解法(积分因子法): (2)变化: ; (3)推广: 伯努利(数一) 4. 齐次方程: (1)解法: (2)特例: 5. 全微分方程(数一): 且 6. 一阶差分方程(数三): 三. 二阶降阶方程 1. : 2. : 令 3. : 令四. 高阶线性方程: 1. 通解结构: (1)齐次解: (2)非齐次特解: 2. 常系数方程: (1)特征方程与特征根: (2)非齐次特解形式确定: 待定系数; (附: 的算子法) (3)由已知解反求方程. 3. 欧拉方程(数一): , 令五. 应用(注意初始条件): 1
12、. 几何应用(斜率, 弧长, 曲率, 面积, 体积); 注: 切线和法线的截距 2. 积分等式变方程(含变限积分); 可设 3. 导数定义立方程: 含双变量条件的方程 4. 变化率(速度) 5. 6. 路径无关得方程(数一): 7. 级数与方程: (1)幂级数求和; (2)方程的幂级数解法: 8. 弹性问题(数三) 第五讲: 多元微分与二重积分一. 二元微分学概念 1. 极限, 连续, 单变量连续, 偏导, 全微分, 偏导连续(必要条件与充分条件), (1) (2) (3) (判别可微性) 注: 点处的偏导数与全微分的极限定义: 2. 特例: (1): 点处可导不连续; (2): 点处连续可导
13、不可微;二. 偏导数与全微分的计算: 1. 显函数一,二阶偏导: 注: (1)型; (2); (3)含变限积分 2. 复合函数的一,二阶偏导(重点): 熟练掌握记号的准确使用 3. 隐函数(由方程或方程组确定): (1)形式: *; * (存在定理) (2)微分法(熟练掌握一阶微分的形式不变性): (要求: 二阶导) (3)注: 与的及时代入 (4)会变换方程.三. 二元极值(定义?); 1. 二元极值(显式或隐式): (1)必要条件(驻点); (2)充分条件(判别) 2. 条件极值(拉格朗日乘数法) (注: 应用) (1)目标函数与约束条件: , (或: 多条件) (2)求解步骤: , 求驻
14、点即可. 3. 有界闭域上最值(重点). (1) (2)实例: 距离问题四. 二重积分计算: 1. 概念与性质(“积”前工作): (1), (2)对称性(熟练掌握): *域轴对称; *奇偶对称; *字母轮换对称; *重心坐标; (3)“分块”积分: *; *分片定义; *奇偶 2. 计算(化二次积分): (1)直角坐标与极坐标选择(转换): 以“”为主; (2)交换积分次序(熟练掌握). 3. 极坐标使用(转换): 附: ; ; 双纽线 4. 特例: (1)单变量: 或 (2)利用重心求积分: 要求: 题型, 且已知的面积与重心 5. 无界域上的反常二重积分(数三)五: 一类积分的应用():
15、1. “尺寸”: (1); (2)曲面面积(除柱体侧面); 2. 质量, 重心(形心), 转动惯量; 3. 为三重积分, 格林公式, 曲面投影作准备. 第六讲: 无穷级数(数一,三)一. 级数概念 1. 定义: (1), (2); (3) (如) 注: (1); (2)(或); (3)“伸缩”级数:收敛收敛. 2. 性质: (1)收敛的必要条件: ; (2)加括号后发散, 则原级数必发散(交错级数的讨论); (3); 二. 正项级数 1. 正项级数: (1)定义: ; (2)特征: ; (3)收敛(有界) 2. 标准级数: (1), (2), (3) 3. 审敛方法: (注:,) (1)比较法
16、(原理):(估计), 如; (2)比值与根值: * * (应用: 幂级数收敛半径计算)三. 交错级数(含一般项): () 1. “审”前考察: (1) (2); (3)绝对(条件)收敛? 注: 若,则发散 2. 标准级数: (1); (2); (3) 3. 莱布尼兹审敛法(收敛?) (1)前提: 发散; (2)条件: ; (3)结论: 条件收敛. 4. 补充方法: (1)加括号后发散, 则原级数必发散; (2). 5. 注意事项: 对比 ; ; ; 之间的敛散关系四. 幂级数: 1. 常见形式: (1), (2), (3) 2. 阿贝尔定理: (1)结论: 敛; 散 (2)注: 当条件收敛时
17、3. 收敛半径,区间,收敛域(求和前的准备) 注(1)与同收敛半径 (2)与之间的转换 4. 幂级数展开法: (1)前提: 熟记公式(双向,标明敛域) ; ; (2)分解: (注:中心移动) (特别: ) (3)考察导函数: (4)考察原函数: 5. 幂级数求和法(注: *先求收敛域, *变量替换): (1) (2),(注意首项变化) (3), (4)的微分方程 (5)应用:. 6. 方程的幂级数解法 7. 经济应用(数三): (1)复利: ; (2)现值: 五. 傅里叶级数(数一): () 1. 傅氏级数(三角级数): 2. 充分条件(收敛定理): (1)由(和函数) (2) 3. 系数公式
18、: 4. 题型: (注: ) (1)且(分段表示) (2)或 (3)正弦或余弦 *(4)()*5. 6. 附产品: 第七讲: 向量,偏导应用与方向导(数一)一. 向量基本运算 1. ; (平行) 2. ; (单位向量(方向余弦) ) 3. ; (投影:; 垂直:; 夹角:) 4. ; (法向:; 面积:)二. 平面与直线 1.平面 (1)特征(基本量): (2)方程(点法式): (3)其它: *截距式; *三点式 2.直线 (1)特征(基本量): (2)方程(点向式): (3)一般方程(交面式): (4)其它: *二点式; *参数式;(附: 线段的参数表示:) 3. 实用方法: (1)平面束方
19、程: (2)距离公式: 如点到平面的距离 (3)对称问题; (4)投影问题.三. 曲面与空间曲线(准备) 1. 曲面 (1)形式: 或; (注: 柱面) (2)法向 (或) 2. 曲线 (1)形式, 或; (2)切向: (或) 3. 应用 (1)交线, 投影柱面与投影曲线; (2)旋转面计算: 参式曲线绕坐标轴旋转; (3)锥面计算.四. 常用二次曲面 1. 圆柱面: 2. 球面: 变形: , , , 3. 锥面: 变形: , 4. 抛物面: , 变形: , 5. 双曲面: 6. 马鞍面: , 或五. 偏导几何应用 1. 曲面 (1)法向: , 注: (2)切平面与法线: 2. 曲线 (1)切
20、向: (2)切线与法平面 3. 综合: , 六. 方向导与梯度(重点) 1. 方向导(方向斜率): (1)定义(条件): (2)计算(充分条件:可微): 附: (3)附: 2. 梯度(取得最大斜率值的方向) : (1)计算: ; (2)结论 ; 取为最大变化率方向; 为最大方向导数值. 第八讲: 三重积分与线面积分(数一)一. 三重积分() 1. 域的特征(不涉及复杂空间域): (1)对称性(重点): 含: 关于坐标面; 关于变量; 关于重心 (2)投影法: (3)截面法: (4)其它: 长方体, 四面体, 椭球 2. 的特征: (1)单变量, (2), (3), (4) 3. 选择最适合方法
21、: (1)“积”前: *; *利用对称性(重点) (2)截面法(旋转体): (细腰或中空, , ) (3)投影法(直柱体): (4)球坐标(球或锥体): , (5)重心法(): 4. 应用问题: (1)同第一类积分: 质量, 质心, 转动惯量, 引力 (2)公式二. 第一类线积分() 1. “积”前准备: (1); (2)对称性; (3)代入“”表达式 2. 计算公式: 3. 补充说明: (1)重心法: ; (2)与第二类互换: 4. 应用范围 (1)第一类积分 (2)柱体侧面积 三. 第一类面积分() 1. “积”前工作(重点): (1); (代入) (2)对称性(如: 字母轮换, 重心)
22、(3)分片 2. 计算公式: (1) (2)与第二类互换: 四: 第二类曲线积分(1): (其中有向) 1. 直接计算: , 常见(1)水平线与垂直线; (2) 2. Green公式: (1); (2): *换路径; *围路径 (3)(但内有奇点) (变形) 3. 推广(路径无关性): (1)(微分方程)(道路变形原理) (2)与路径无关(待定): 微分方程. 4. 应用 功(环流量): (有向,)五. 第二类曲面积分: 1. 定义: , 或 (其中含侧) 2. 计算: (1)定向投影(单项): , 其中(特别:水平面); 注: 垂直侧面, 双层分隔 (2)合一投影(多项,单层): (3)化第
23、一类(不投影): 3. 公式及其应用: (1)散度计算: (2)公式: 封闭外侧, 内无奇点 (3)注: *补充“盖”平面:; *封闭曲面变形(含奇点) 4. 通量与积分: (有向,)六: 第二类曲线积分(2): 1. 参数式曲线: 直接计算(代入) 注(1)当时, 可任选路径; (2)功(环流量): 2. Stokes公式: (要求: 为交面式(有向), 所张曲面含侧) (1)旋度计算: (2)交面式(一般含平面)封闭曲线: 同侧法向或; (3)Stokes公式(选择): ()化为; ()化为; ()化为高数重点知识总结1、 基本初等函数:反函数(y=arctanx),对数函数(y=lnx)
24、,幂函数(y=x),指数函数(),三角函数(y=sinx),常数函数(y=c)2、 分段函数不是初等函数。3、 无穷小:高阶+低阶=低阶 例如:4、 两个重要极限:经验公式:当,例如:5、 可导必定连续,连续未必可导。例如:连续但不可导。6、 导数的定义:7、 复合函数求导: 例如:8、 隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:9、 由参数方程所确定的函数求导:若,则,其二阶导数:10、 微分的近似计算: 例如:计算 11、 函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:(x=0是函数可去间断点),(x=0是函数的跳跃间断点)(2)第二类:振
25、荡间断点和无穷间断点;例如:(x=0是函数的振荡间断点),(x=0是函数的无穷间断点)12、 渐近线:水平渐近线:铅直渐近线:斜渐近线:例如:求函数的渐近线13、 驻点:令函数y=f(x),若f(x0)=0,称x0是驻点。14、 极值点:令函数y=f(x),给定x0的一个小邻域u(x0,),对于任意xu(x0,),都有f(x)f(x0),称x0是f(x)的极小值点;否则,称x0是f(x)的极大值点。极小值点与极大值点统称极值点。15、 拐点:连续曲线弧上的上凹弧与下凹弧的分界点,称为曲线弧的拐点。16、 拐点的判定定理:令函数y=f(x),若f(x0)=0,且x0;xx0时,f(x)0或xx0
26、,f(x)x0时,f(x)0,称点(x0,f(x0)为f(x)的拐点。17、 极值点的必要条件:令函数y=f(x),在点x0处可导,且x0是极值点,则f(x0)=0。18、 改变单调性的点:,不存在,间断点(换句话说,极值点可能是驻点,也可能是不可导点)19、 改变凹凸性的点:,不存在(换句话说,拐点可能是二阶导数等于零的点,也可能是二阶导数不存在的点)20、 可导函数f(x)的极值点必定是驻点,但函数的驻点不一定是极值点。21、 中值定理: (1)罗尔定理:在a,b上连续,(a,b)内可导,则至少存在一点,使得 (2)拉格朗日中值定理:在a,b上连续,(a,b)内可导,则至少存在一点,使得(
27、3)积分中值定理:在区间a,b上可积,至少存在一点,使得22、 常用的等价无穷小代换:23、 对数求导法:例如,24、 洛必达法则:适用于“”型,“”型,“”型等。当,皆存在,且,则 例如,25、 无穷大:高阶+低阶=高阶 例如, 26、 不定积分的求法(1) 公式法(2) 第一类换元法(凑微分法)(3) 第二类换元法:哪里复杂换哪里,常用的换元:1)三角换元:,可令;,可令;,可令 2)当有理分式函数中分母的阶较高时,常采用倒代换27、 分部积分法:,选取u的规则“反对幂指三”,剩下的作v。分部积分出现循环形式的情况,例如:28、 有理函数的积分:例如:其中,前部分需要进行拆分,令29、 定积分的定义:30、 定积分的性质:(1) 当a=b时,;(2) 当ab时,(3) 当f(x)是奇函数,(4) 当f(x)是偶函数,(5) 可加性:31、 变上限积分:推广:32、 定积分的计算(牛顿莱布尼茨公式):33、 定积分的分部积分法: 例如:34、 反常积分:(1)无穷限的反常积分: (2)无界函数的反常积分:35、 平面图形的面积:(1) (2)36、 旋转体的体积:(1) 绕x轴旋转, (2)绕y轴旋转,