《人教版八年级数学下册第20章数据的分析 20.1.1平均数第1课时 平均数和加权平均数课件 %28共24张PPT%29.ppt》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第20章数据的分析 20.1.1平均数第1课时 平均数和加权平均数课件 %28共24张PPT%29.ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20.1.1平均数,第二十章数据的分析,第1课时平均数和加权平均数,情境引入,1.理解数据的权和加权平均数的概念,体会权的作用.2.明确加权平均数与算术平均数的关系,掌握加权平均数的计算方法.(重点、难点),在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图),新课情境导入,重庆7月中旬一周的最高气温如下:,1.你能快速计算这一周的平均最高气温吗?2.你还能回忆、归纳出
2、算术平均数的概念吗?,一般地,对于n个数x1,x2,xn,我们把,叫做这n个数的算术平均数,简称平均数.,问题:一家公司打算招聘一名英文翻译,对甲、乙两位应试者进行了听、说、读、写、的英语水平测试,他们的各项成绩如表所示:(1)如果公司想招一名综合能力较强的翻译,请计算两名应试者的平均成绩,应该录用谁?,合作探究,乙的平均成绩为,显然甲的成绩比乙高,所以从成绩看,应该录取甲我们常用平均数表示一组数据的“平均水平”,解:甲的平均成绩为,,算术平均数,(2)如果公司想招一名笔译能力较强的翻译,用算术平均数来衡量他们的成绩合理吗?,听、说、读、写的成绩按照2:1:3:4的比确定,2:1:3:4,因为
3、乙的成绩比甲高,所以应该录取乙,解:,,思考:能把这种加权平均数的计算方法推广到一般吗?,一般地,若n个数x1,x2,xn的权分别是w1,w2,wn,则叫做这n个数的加权平均数,(3)如果公司想招一名口语能力较强的翻译,则应该录取谁?,听、说、读、写的成绩按照3:3:2:2的比确定,同样一张应试者的应聘成绩单,由于各个数据所赋的权数不同,造成的录取结果截然不同.,(4)将问题(1)、(2)、(3)比较,你能体会到权的作用吗?,例1一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选
4、手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次.,典例精析,解:选手A的最后得分是,选手B的最后得分是,由上可知选手B获得第一名,选手A获得第二名.,你能说说算术平均数与加权平均数的区别和联系吗?,2.在实际问题中,各项权不相等时,计算平均数时就要采用加权平均数,当各项权相等时,计算平均数就要采用算术平均数.,1.算术平均数是加权平均数的一种特殊情况(它特殊在各项的权相等);,议一议,做一做,60,40,在2017年中山大学数科院的研究生入学考试中,两名考生在笔试、面试中的成绩(百分制)如下图所示,你觉得谁应该被录取?,(笔试和面试的成绩分别按60%和40%
5、计入总分),6,:,4,解:根据题意,求甲、乙成绩的加权平均数,得,答:因为_,所以_将被录取.,乙,在求n个数的算术平均数时,如果x1出现f1次,x2出现f2次,xk出现fk次(这里f1+f2+fk=n)那么这n个数的算术平均数,也叫做x1,x2,xk这k个数的加权平均数,其中f1,f2,fk分别叫做x1,x2,xk的权.,知识要点,例2某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).,解:这个跳水队运动员的平均年龄为:,=_(岁).答:这个跳水队运动员的平均年龄约为_.,8,16,2
6、4,2,14,14岁,某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为83.4分,这两个班95名学生的平均分是多少?,解:(81.550+83.445)95=782895=82.4答:这两个班95名学生的平均分是82.4分.,做一做,当堂跟踪练习,1.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是_.,2.已知一组数据4,13,24的权数分别是则这组数据的加权平均数是_.,解析:,解析:,10,17,3.某公司有15名员工,他们所在的部门及相应每人所创的年利润(万元)如下表,该公司每人所创年利润的平均数是_万元.,30,4.某次歌唱比赛,两名选手的成绩如下:(1)若按三项平均值取第一名,则_是第一名.,选手B,(2)解:,所以,此时第一名是选手A,(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时第一名是谁?,课堂小结,平均数与加权平均数,算术平均数:,加权平均数:,