高中数学必修1-5各章知识点总结.doc

上传人:模** 文档编号:27545111 上传时间:2022-07-25 格式:DOC 页数:74 大小:2.78MB
返回 下载 相关 举报
高中数学必修1-5各章知识点总结.doc_第1页
第1页 / 共74页
高中数学必修1-5各章知识点总结.doc_第2页
第2页 / 共74页
点击查看更多>>
资源描述

《高中数学必修1-5各章知识点总结.doc》由会员分享,可在线阅读,更多相关《高中数学必修1-5各章知识点总结.doc(74页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学必修1各章知识点总结第一章 集合与函数概念第一节 集合一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y(3) 元素的无序性: 如:a,b,c和a,c,b是表示同一个集合3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋(1) 用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5(2) 集合的表示方法:列举法与描述法。u 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法

2、:a,b,c2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。xR| x-32 ,x| x-323) 语言描述法:例:不是直角三角形的三角形4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两

3、集合相等”即: 任何一个集合是它本身的子集。AA真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)如果 AB, BC ,那么 AC 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。u 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交 集并 集补 集定 义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作A交B),即AB=x|xA,且xB由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集记作:AB(读作A并B),即AB =x|xA,

4、或xB)设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)SA记作,即CSA=韦恩图示SA性 质AA=A A=AB=BAABA ABBAA=AA=AAB=BAABABB(CuA) (CuB)= Cu (AB)(CuA) (CuB)= Cu(AB)A (CuA)=UA (CuA)= 例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合a,b,c 的真子集共有 个 3.若集合M=y|y=x2-2x+1,xR,N=x|x0,则M与N的关系是 .4.设集合A=,B=,若A

5、B,则的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A=x| x2+2x-8=0, B=x| x2-5x+6=0, C=x| x2-mx+m2-19=0, 若BC,AC=,求m的值第二节 函数及其表示 二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函

6、数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:1定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.u 相

7、同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关);定义域一致 (两点必须同时具备)(见课本21页相关例2)2值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3

8、) 对称变换4区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示5映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”对于映射f:AB来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。6.分段函数 (1)在定义域的不同部分上有不同的解析表达式

9、的函数。(2)各部分的自变量的取值情况(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集补充:复合函数如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 例题:1.求下列函数的定义域: 2.设函数的定义域为,则函数的定义域为_ _ 3.若函数的定义域为,则函数的定义域是 4.函数 ,若,则= 5.求下列函数的值域: (3) (4)第三节 函数的基本性质一函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(

10、x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法: 任取x1,x2D,且x11,且*u 负数没有偶次方根;0的任何次方根都

11、是0,记作。当是奇数时,当是偶数时,2分数指数幂正数的分数指数幂的意义,规定:,u 0的正分数指数幂等于0,0的负分数指数幂没有意义3实数指数幂的运算性质(1);(2);(3)(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a10a10a0,a0,函数y=ax与y=loga(-x)的图象只能是 ( )2.计算: ;= ;= ; = 3.函数y=log(2x2-3x+1)的递减区间为 4.若函数在区间上的最大值是最小值的3倍,则a= 5.已知,(1)求的定义域(2)求

12、使的的取值范围第三章 函数的应用 第一节 函数与方程一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点3、函数零点的求法: (代数法)求方程的实数根; (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点4、二次函数的零点:二次函数(1),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点(2),方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点(3),方

13、程无实根,二次函数的图象与轴无交点,二次函数无零点第二节 函数模型及其函数1.函数的模型 收集数据画散点图选择函数模型求函数模型用函数模型解释实际问题符合实际不符合实际检验高 中 数学 必 修 2知识点第一章 空间几何体第一节 柱、锥、台、球的结构特征多面体:由多个平面的多边形围城的集合体。其中围成多面体的多边形叫做多面体的面; 相邻的两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体佳作棱柱。棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做

14、棱锥。棱台:用一个平行于棱锥底面平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。圆柱:以矩形一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转所形成的面围成的旋转体叫做棱锥。圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体。第二节 空间几何体的三视图和直观图1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下2 画三视图的原则: 长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1).平行于坐

15、标轴的线依然平行于坐标轴;(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图第三节 空间几何体的表面积与体积(一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积 3 圆锥的表面积4 圆台的表面积5 球的表面积(二)空间几何体的体积1柱体的体积 2锥体的体积 3台体的体积 4球体的体积 第二章 直线与平面的位置关系第一节 空间点、直线、平面之间的位置关系2.1.1 平面1 平面含义:平面是无限延展的2 平面的画法及表示DCBA(1)平面的画法:水平放置的平面通常

16、画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表示为LAALBL = L AB公理1作用:判断直线是否在平面内CBA(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A、B、C三点不共线 = 有且只有一个平面,使A、B、C。公理2作用:确定一个平面的依据。PL(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只

17、有一条过该点的公共直线。符号表示为:P =L,且PL公理3作用:判定两个平面是否相交的依据2.1.2 空间中直线与直线之间的位置关系1 空间的两条直线有如下三种关系:共面直线 相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。2 公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线=acabcb强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。公理4作用:判断空间两条直线平行的依据。3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点: a与b所成的角

18、的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上; 两条异面直线所成的角(0, ); 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作ab; 两条直线互相垂直,有共面垂直与异面垂直两种情形; 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。2.1.3 2.1.4 空间中直线与平面、平面与平面之间的位置关系1、直线与平面有三种位置关系:(1)直线在平面内 有无数个公共点(2)直线与平面相交 有且只有一个公共点(3)直线在平面平行 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a 来表示a a=A a第二

19、节 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。简记为:线线平行,则线面平行。符号表示:a b = aab2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。符号表示:a b ab = P ab2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线

20、平行。简记为:线面平行则线线平行。符号表示:aa ab= b作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表示:= a ab = b作用:可以由平面与平面平行得出直线与直线平行第三节 直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面内的任意一条直线都垂直,我们就说直线L与平面互相垂直,记作L,直线L叫做平面的垂线,平面叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 L p 2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点: a)定理中的“两条

21、相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A 梭 l B2、二面角的记法:二面角-l-或-AB-3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。2性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系平面与平面的位置关系直线与平

22、面的位置关系直线与直线的位置关系第三章 直线与方程第一节 直线的倾斜角和斜率1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.2、 倾斜角的取值范围: 0180.当直线l与x轴垂直时, = 90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tan当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.由此可知, 一条直线l的倾斜角一定存在,但是斜

23、率k不一定存在.4、 直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: 2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立即如果k1=k2, 那么一定有L1L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 第二节 直线方程1 直线的点斜式方程1、 直线的点斜式方程:直线经过点,且斜

24、率为2、直线的斜截式方程:已知直线的斜率为,且与轴的交点为2 直线的两点式方程1、直线的两点式方程:已知两点其中2、直线的截距式方程:已知直线与轴的交点为A,与轴的交点为B,其中3 直线的一般式方程1、直线的一般式方程:关于的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。第三节 直线的交点坐标与距离公式1两直线的交点坐标1、给出例题:两直线交点坐标L1 :3x+4y-2=0L1:2x+y +2=0 解:解方程组 得 x=-2,y=2所以L1与L2的交点坐标为M(-2,2)注:直线的交点坐标就是联立两个直线方程解方程组。 2 两点间距离两点间的距离公式3 点到直线的距离公式1点到直

25、线距离公式:点到直线的距离为:2、两平行线间的距离公式:已知两条平行线直线和的一般式方程为:,:,则与的距离为第四章 圆与方程 第一节 圆的方程1 圆的标准方程1、圆的标准方程:圆心为A(a,b),半径为r的圆的方程2、点与圆的关系的判断方法:(1),点在圆外(2)=,点在圆上(3),点在圆内2 圆的一般方程1、圆的一般方程: 2、圆的一般方程的特点: (1)x2和y2的系数相同,不等于0没有xy这样的二次项 (2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐

26、标与半径大小,几何特征较明显。第二节 直线、圆的位置关系1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系设直线:,圆:,圆的半径为,圆心到直线的距离为,则判别直线与圆的位置关系的依据有以下几点:(1)当时,直线与圆相离;(2)当时,直线与圆相切;(3)当时,直线与圆相交;2 圆与圆的位置关系两圆的位置关系设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:(1)当时,圆与圆相离;(2)当时,圆与圆外切;(3)当时,圆与圆相交;(4)当时,圆与圆内切;(5)当时,圆与圆内含;3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几

27、何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论第三节 空间直角坐标系1空间直角坐标系1、点M对应着唯一确定的有序实数组,、分别是P、Q、R在、轴上的坐标2、有序实数组,对应着空间直角坐标系中的一点3、空间中任意点M的坐标都可以用有序实数组来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M,叫做点M的横坐标,叫做点M的纵坐标,叫做点M的竖坐标。2空间两点间的距离公式1、空间中任意一点到点之间的距离公式高中数学必修3知识点第一章 算法初步第一节 算法与程

28、序框图1、算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是

29、唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2、 程序框图与算法的基本框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。处理框赋值、计算

30、,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时标明“否”或“N”。学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。AB(三)、算法的三种基本逻辑结构

31、:顺序结构、条件结构、循环结构。1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所指定的操作。2、条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A

32、框、B框都不执行。一个判断结构可以有多个判断框。3、 循环结构: 在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。A成立不成立P不成立P成立Ap 当型循环结构 直到型循环结构 注意:1循环结构要在某个条件下终止循环,这就需要

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁