平面几何证明题的一般思路及方法简述(共2页).doc

上传人:飞****2 文档编号:27532372 上传时间:2022-07-25 格式:DOC 页数:2 大小:16KB
返回 下载 相关 举报
平面几何证明题的一般思路及方法简述(共2页).doc_第1页
第1页 / 共2页
平面几何证明题的一般思路及方法简述(共2页).doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

《平面几何证明题的一般思路及方法简述(共2页).doc》由会员分享,可在线阅读,更多相关《平面几何证明题的一般思路及方法简述(共2页).doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上平面几何证明题的一般思路及方法简述 【摘 要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何 证明题 思路 方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以

2、接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因

3、,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么

4、这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的

5、题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条件关系松散且难以利用时,就要去有意识地寻找、选择并应用

6、媒介实现过渡,这样的综合法就称之为媒介型综合法。 (4)解析型综合法。解题时,运用解析法的思想制定解题的大体计划和方向,然后并不真用解析法来实现这个计划,而用综合法来实现,这种综合法被称为解析型综合法。 在具体证题时,这两种方法可单独运用,也可配合运用,在分析中有综合,在综合中有分析,以进行交叉使用。 二、间接式思路 有些命题往往不易甚至不能直接证明,这时,不妨证明它的等效命题,以间接地达到目标,这种证题思路就称为间接式思路。我们常运用的反证法、同一法证题就是两种典型的用间接式思路证题的方法。 1.反证法。具体地说,在证明一个命题时,如正面不易入手,就要从命题结论的反面入手,先假设结论的反面成

7、立,如果由此假设进行严格推理,推导出的结果与已知条件、公式、定理、定义、假设等的其中一个相矛盾,或者推出两个相互矛盾的结果,就证明了“结论反面成立”的假设是错误的,从而得出结论的正面成立,这种证题方法就叫做反证法。当结论的反面只有一个时,否定了这一个便完成证明,这种较单纯的反证法又叫做归谬法;而当结论的反面有若干个时,就必须驳倒其中的每一个,这种较繁琐的反证法又称为穷举法。 反证法证题通常有如下三个步骤: (1)反设。作出与结论相反的假设,通常称这种假设为反证假设。 (2)归谬。利用反证假设和已知条件,进行符合逻辑的推理,推出与某个已知条件、公理、定义等相矛盾的结果。根据矛盾律,在推理和论证的

8、过程中,在同时间、同关系下,不能对同一对象作出两个相反的论断,可知反证假设不成立。 (3)得出结论。根据排除率,即在同一论证过程中,命题C与命题非C有且仅有一个是正确的,可知原结论成立。 2.同一法。欲证某图形具有某种性质而又比较繁杂或不易直接证明时,有时可以作出具有所示性质的图形,然后证明所作的图形与所给的某图形就是同一个,由此把它们等同起来,这种证法叫做同一法。 例如,同一法证平面几何问题的步骤如下:作出符合命题结论的图形;证明所作图形符合已知条件;根据唯一性,确定所作的图形与已知图形吻合;断定命题的真实性。 同一法和反证法都是间接式思路的方法。其中,同一法的局限性较大,通常只适合于符合同一原理的命题;反证法的适用范围则广泛一些,能够用反证法证明的命题,不一定能用同一法论证,但对于能够用同一法证明的命题,一般都能用反证法加以证明。 在证题过程中,不论是直接思路还是间接思路,都要进行一系列正确的推理,需要解题者对扑朔迷离的表象进行由表及里、去伪存真地分析、加工和改造,并从不同方向探索,以在广阔的范围内选择思路,从而及时纠正尝试中的错误,最后获得命题的证明。 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁