《2018年度高考-数学空间几何高考-真命题.doc》由会员分享,可在线阅读,更多相关《2018年度高考-数学空间几何高考-真命题.doc(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、*2017年高考数学空间几何高考真题一选择题(共9小题)1如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()ABCD2已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABCD3在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1BA1EBDCA1EBC1DA1EAC4某三棱锥的三视图如图所示,则该三棱锥的体积为()A60B30C20D105某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A+1B+3C+1D+36如图,已知正
2、四面体DABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,=2,分别记二面角DPRQ,DPQR,DQRP的平面角为、,则()ABCD7如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A90B63C42D361某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10B12C14D162已知直三棱柱ABCA1B1C1中,ABC=120,AB=2,BC=CC1
3、=1,则异面直线AB1与BC1所成角的余弦值为()ABCD二填空题(共5小题)8已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O的表面积为 9长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为 10已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 11由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为 12如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则
4、的值是 三解答题(共9小题)13如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,且四棱锥PABCD的体积为,求该四棱锥的侧面积14如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90(1)证明:直线BC平面PAD;(2)若PCD面积为2,求四棱锥PABCD的体积15如图四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACD
5、E的体积比16如图,直三棱柱ABCA1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5(1)求三棱柱ABCA1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小17如图,在三棱锥PABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点(1)求证:PABD;(2)求证:平面BDE平面PAC;(3)当PA平面BDE时,求三棱锥EBCD的体积18如图,在四棱锥PABCD中,AD平面PDC,ADBC,PDPB,AD=1,BC=3,CD=4,PD=2()求异面直线AP与BC所成角的余弦值;()求证:P
6、D平面PBC;()求直线AB与平面PBC所成角的正弦值19如图,已知四棱锥PABCD,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PC=AD=2DC=2CB,E为PD的中点()证明:CE平面PAB;()求直线CE与平面PBC所成角的正弦值20由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E平面ABCD,()证明:A1O平面B1CD1;()设M是OD的中点,证明:平面A1EM平面B1CD121如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不
7、重合)分别在棱AD,BD上,且EFAD求证:(1)EF平面ABC;(2)ADAC3如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,求二面角APBC的余弦值4如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45,求二面角MABD的余弦值5如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD (1)证明:平面A
8、CD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值6如图,在四棱锥PABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值7如图,在三棱锥PABC中,PA底面ABC,BAC=90点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2()求证:MN平面BDE;()求二面角CEMN的正弦值;()已知点H在棱PA上,且直线NH与直线BE所
9、成角的余弦值为,求线段AH的长8如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点()设P是上的一点,且APBE,求CBP的大小; ()当AB=3,AD=2时,求二面角EAGC的大小2017年高考数学空间几何高考真题参考答案与试题解析一选择题(共7小题)1如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()ABCD【解答】解:对于选项B,由于ABMQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于ABMQ,结合线面平行判定定理可知C不满足题意;对于
10、选项D,由于ABNQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意,故选:A2已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()ABCD【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,该圆柱底面圆周半径r=,该圆柱的体积:V=Sh=故选:B3在正方体ABCDA1B1C1D1中,E为棱CD的中点,则()AA1EDC1BA1EBDCA1EBC1DA1EAC【解答】解:法一:连B1C,由题意得BC1B1C,A1B1平面B1BCC1,且BC1平面B1BCC1,A1B1BC1,A1B1B1C=B1,BC1平面A1ECB1,A1E平
11、面A1ECB1,A1EBC1故选:C法二:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCDA1B1C1D1中棱长为2,则A1(2,0,2),E(0,1,0),B(2,2,0),D(0,0,0),C1(0,2,2),A(2,0,0),C(0,2,0),=(2,1,2),=(0,2,2),=(2,2,0),=(2,0,2),=(2,2,0),=2,=2,=0,=6,A1EBC1故选:C4某三棱锥的三视图如图所示,则该三棱锥的体积为()A60B30C20D10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积=10故选:D5某几何体的三视图如图所示(单位
12、:cm),则该几何体的体积(单位:cm2)是()A+1B+3C+1D+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为123+3=+1,故选:A6如图,已知正四面体DABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,=2,分别记二面角DPRQ,DPQR,DQRP的平面角为、,则()ABCD【解答】解法一:如图所示,建立空间直角坐标系设底面ABC的中心为O不妨设OP=3则O(0,0,0),P(0,3,0),C(0,6,0),D
13、(0,0,6),Q,R,=,=(0,3,6),=(,5,0),=,=设平面PDR的法向量为=(x,y,z),则,可得,可得=,取平面ABC的法向量=(0,0,1)则cos=,取=arccos同理可得:=arccos=arccos解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OEPR,OFPQ,OGQR,垂足分别为E,F,G,连接DE,DF,DG设OD=h则tan=同理可得:tan=,tan=由已知可得:OEOGOFtantantan,为锐角故选:B7如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A9
14、0B63C42D36【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=3210326=63,故选:B1某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A10B12C14D16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=2(2+4)=6,这些梯形的面积之和为62=12,故选:B2已知直三棱柱ABCA1B1C1中,ABC=120,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()ABCD【
15、解答】解:【解法一】如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,),可知MN=AB1=,NP=BC1=;作BC中点Q,则PQM为直角三角形;PQ=1,MQ=AC,ABC中,由余弦定理得AC2=AB2+BC22ABBCcosABC=4+1221()=7,AC=,MQ=;在MQP中,MP=;在PMN中,由余弦定理得cosMNP=;又异面直线所成角的范围是(0,AB1与BC1所成角的余弦值为【解法二】如图所示,补成四棱柱ABCDA1B1C1D1,求BC1D即可;BC1=,BD=,C1D=,+BD2=,DBC1=90,
16、cosBC1D=二填空题(共5小题)8已知三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,则球O的表面积为36【解答】解:三棱锥SABC的所有顶点都在球O的球面上,SC是球O的直径,若平面SCA平面SCB,SA=AC,SB=BC,三棱锥SABC的体积为9,可知三角形SBC与三角形SAC都是等腰直角三角形,设球的半径为r,可得,解得r=3球O的表面积为:4r2=36故答案为:369长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为14【解答】解:长方体的长、宽、高分别为3,2,1,其顶点
17、都在球O的球面上,可知长方体的对角线的长就是球的直径,所以球的半径为:=则球O的表面积为:4=14故答案为:1410已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为【解答】解:设正方体的棱长为a,这个正方体的表面积为18,6a2=18,则a2=3,即a=,一个正方体的所有顶点在一个球面上,正方体的体对角线等于球的直径,即a=2R,即R=,则球的体积V=()3=;故答案为:11由一个长方体和两个 圆柱体构成的几何体的三视图如图,则该几何体的体积为2+【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=211=2,圆柱的底面半径为1,高为1,则圆柱的体
18、积V2=121=,则该几何体的体积V=V1+2V1=2+,故答案为:2+12如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:R22R=2R3则=故答案为:三解答题(共9小题)13如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,且四棱锥PABCD的体积为,求该四棱锥的侧面积【解答】证明:(1)在四棱锥PABCD中,BAP=CDP=90,ABPA,CDPD,又ABCD,A
19、BPD,PAPD=P,AB平面PAD,AB平面PAB,平面PAB平面PAD解:(2)设PA=PD=AB=DC=a,取AD中点O,连结PO,PA=PD=AB=DC,APD=90,平面PAB平面PAD,PO底面ABCD,且AD=,PO=,四棱锥PABCD的体积为,VPABCD=,解得a=2,PA=PD=AB=DC=2,AD=BC=2,PO=,PB=PC=2,该四棱锥的侧面积:S侧=SPAD+SPAB+SPDC+SPBC=+=6+214如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90(1)证明:直线BC平面PAD;(2)若PCD面积为2,求
20、四棱锥PABCD的体积【解答】(1)证明:四棱锥PABCD中,BAD=ABC=90BCAD,AD平面PAD,BC平面PAD,直线BC平面PAD;(2)解:四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90设AD=2x,则AB=BC=x,CD=,O是AD的中点,连接PO,OC,CD的中点为:E,连接OE,则OE=,PO=,PE=,PCD面积为2,可得:=2,即:,解得x=2,PE=2则V PABCD=(BC+AD)ABPO=415如图四面体ABCD中,ABC是正三角形,AD=CD(1)证明:ACBD;(2)已知ACD是直角三角形,AB=BD,若
21、E为棱BD上与D不重合的点,且AEEC,求四面体ABCE与四面体ACDE的体积比【解答】证明:(1)取AC中点O,连结DO、BO,ABC是正三角形,AD=CD,DOAC,BOAC,DOBO=O,AC平面BDO,BD平面BDO,ACBD解:(2)法一:连结OE,由(1)知AC平面OBD,OE平面OBD,OEAC,设AD=CD=,则OC=OA=1,E是线段AC垂直平分线上的点,EC=EA=CD=,由余弦定理得:cosCBD=,即,解得BE=1或BE=2,BEBD=2,BE=1,BE=ED,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,BE=ED,SDCE=SBCE,四面体ABCE与
22、四面体ACDE的体积比为1法二:设AD=CD=,则AC=AB=BC=BD=2,AO=CO=DO=1,BO=,BO2+DO2=BD2,BODO,以O为原点,OA为x轴,OB为y轴,OD为z轴,建立空间直角坐标系,则C(1,0,0),D(0,0,1),B(0,0),A(1,0,0),设E(a,b,c),(01),则(a,b,c1)=(0,1),解得E(0,1),=(1,),=(1,),AEEC,=1+32+(1)2=0,由0,1,解得,DE=BE,四面体ABCE与四面体ACDE的高都是点A到平面BCD的高h,DE=BE,SDCE=SBCE,四面体ABCE与四面体ACDE的体积比为116如图,直三棱
23、柱ABCA1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5(1)求三棱柱ABCA1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小【解答】解:(1)直三棱柱ABCA1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5三棱柱ABCA1B1C1的体积:V=SABCAA1=20(2)连结AM,直三棱柱ABCA1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,AA1底面ABC,AM=,A1MA是直线A1M与平面ABC所成角,tanA1MA=,直线A1M与平面A
24、BC所成角的大小为arctan17如图,在三棱锥PABC中,PAAB,PABC,ABBC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点(1)求证:PABD;(2)求证:平面BDE平面PAC;(3)当PA平面BDE时,求三棱锥EBCD的体积【解答】解:(1)证明:由PAAB,PABC,AB平面ABC,BC平面ABC,且ABBC=B,可得PA平面ABC,由BD平面ABC,可得PABD;(2)证明:由AB=BC,D为线段AC的中点,可得BDAC,由PA平面ABC,PA平面PAC,可得平面PAC平面ABC,又平面ABC平面ABC=AC,BD平面ABC,且BDAC,即有BD平面PAC,B
25、D平面BDE,可得平面BDE平面PAC;(3)PA平面BDE,PA平面PAC,且平面PAC平面BDE=DE,可得PADE,又D为AC的中点,可得E为PC的中点,且DE=PA=1,由PA平面ABC,可得DE平面ABC,可得SBDC=SABC=22=1,则三棱锥EBCD的体积为DESBDC=11=18如图,在四棱锥PABCD中,AD平面PDC,ADBC,PDPB,AD=1,BC=3,CD=4,PD=2()求异面直线AP与BC所成角的余弦值;()求证:PD平面PBC;()求直线AB与平面PBC所成角的正弦值【解答】解:()如图,由已知ADBC,故DAP或其补角即为异面直线AP与BC所成的角因为AD平
26、面PDC,所以ADPD在RtPDA中,由已知,得,故所以,异面直线AP与BC所成角的余弦值为证明:()因为AD平面PDC,直线PD平面PDC,所以ADPD又因为BCAD,所以PDBC,又PDPB,所以PD平面PBC解:()过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD平面PBC,故PF为DF在平面PBC上的射影,所以DFP为直线DF和平面PBC所成的角由于ADBC,DFAB,故BF=AD=1,由已知,得CF=BCBF=2又ADDC,故BCDC,在RtDCF中,可得所以,直线AB与平面PBC所成角的正弦值为19如图,已知四棱锥PABCD
27、,PAD是以AD为斜边的等腰直角三角形,BCAD,CDAD,PC=AD=2DC=2CB,E为PD的中点()证明:CE平面PAB;()求直线CE与平面PBC所成角的正弦值【解答】证明:()取AD的中点F,连结EF,CF,E为PD的中点,EFPA,在四边形ABCD中,BCAD,AD=2DC=2CB,F为中点,CFAB,平面EFC平面ABP,EC平面EFC,EC平面PAB解:()连结BF,过F作FMPB于M,连结PF,PA=PD,PFAD,推导出四边形BCDF为矩形,BFAD,AD平面PBF,又ADBC,BC平面PBF,BCPB,设DC=CB=1,则AD=PC=2,PB=,BF=PF=1,MF=,又
28、BC平面PBF,BCMF,MF平面PBC,即点F到平面PBC的距离为,MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为,则sin=20由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD 的交点,E为AD的中点,A1E平面ABCD,()证明:A1O平面B1CD1;()设M是OD的中点,证明:平面A1EM平面B1CD1【解答】证明:()取B1D1中点G,连结A1G、CG,四边形AB
29、CD为正方形,O为AC与BD 的交点,四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后,A1GOC,四边形OCGA1是平行四边形,A1OCG,A1O平面B1CD1,CG平面B1CD1,A1O平面B1CD1()四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后,BDB1D1,M是OD的中点,O为AC与BD 的交点,E为AD的中点,A1E平面ABCD,又BD平面ABCD,BDA1E,四边形ABCD为正方形,O为AC与BD 的交点,AOBD,M是OD的中点,E为AD的中点,EMBD,A1EEM=E,BD平面A1EM,BDB1D1,B1D1平面A1EM,B1D1平面B1CD1,平面A1E
30、M平面B1CD121如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD求证:(1)EF平面ABC;(2)ADAC【解答】证明:(1)因为ABAD,EFAD,且A、B、E、F四点共面,所以ABEF,又因为EF平面ABC,AB平面ABC,所以由线面平行判定定理可知:EF平面ABC;(2)在线段CD上取点G,连结FG、EG使得FGBC,则EGAC,因为BCBD,FGBC,所以FGBD,又因为平面ABD平面BCD,所以FG平面ABD,所以FGAD,又因为ADEF,且EFFG=F,所以AD平面EFG,所以ADEG,故ADAC3
31、如图,在四棱锥PABCD中,ABCD,且BAP=CDP=90(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,求二面角APBC的余弦值【解答】(1)证明:BAP=CDP=90,PAAB,PDCD,ABCD,ABPD,又PAPD=P,且PA平面PAD,PD平面PAD,AB平面PAD,又AB平面PAB,平面PAB平面PAD;(2)解:ABCD,AB=CD,四边形ABCD为平行四边形,由(1)知AB平面PAD,ABAD,则四边形ABCD为矩形,在APD中,由PA=PD,APD=90,可得PAD为等腰直角三角形,设PA=AB=2a,则AD=取AD中点O,BC中点E,连接P
32、O、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C(),设平面PBC的一个法向量为,由,得,取y=1,得AB平面PAD,AD平面PAD,ABPD,又PDPA,PAAB=A,PD平面PAB,则为平面PAB的一个法向量,cos=由图可知,二面角APBC为钝角,二面角APBC的余弦值为4如图,四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90,E是PD的中点(1)证明:直线CE平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45,求二面角MABD的余弦
33、值【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EFAD,AB=BC=AD,BAD=ABC=90,BCAD,BCEF是平行四边形,可得CEBF,BF平面PAB,CE平面PAB,直线CE平面PAB;(2)解:四棱锥PABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90,E是PD的中点取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,PCO=60,直线BM与底面ABCD所成角为45,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQAB于Q,连接MQ
34、,所以MQN就是二面角MABD的平面角,MQ=,二面角MABD的余弦值为:=5如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD (1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角DAEC的余弦值【解答】(1)证明:如图所示,取AC的中点O,连接BO,ODABC是等边三角形,OBACABD与CBD中,AB=BD=BC,ABD=CBD,ABDCBD,AD=CDACD是直角三角形,AC是斜边,ADC=90DO=ACDO2+BO2=AB2=BD2BOD=90OBOD又DOAC=O,OB平面
35、ACD又OB平面ABC,平面ACD平面ABC(2)解:设点D,B到平面ACE的距离分别为hD,hE则=平面AEC把四面体ABCD分成体积相等的两部分,=1点E是BD的中点建立如图所示的空间直角坐标系不妨取AB=2则O(0,0,0),A(1,0,0),C(1,0,0),D(0,0,1),B(0,0),E=(1,0,1),=,=(2,0,0)设平面ADE的法向量为=(x,y,z),则,即,取=同理可得:平面ACE的法向量为=(0,1,)cos=二面角DAEC的余弦值为6如图,在四棱锥PABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4
36、(1)求证:M为PB的中点;(2)求二面角BPDA的大小;(3)求直线MC与平面BDP所成角的正弦值【解答】(1)证明:如图,设ACBD=O,ABCD为正方形,O为BD的中点,连接OM,PD平面MAC,PD平面PBD,平面PBD平面AMC=OM,PDOM,则,即M为PB的中点;(2)解:取AD中点G,PA=PD,PGAD,平面PAD平面ABCD,且平面PAD平面ABCD=AD,PG平面ABCD,则PGAD,连接OG,则PGOG,由G是AD的中点,O是AC的中点,可得OGDC,则OGAD以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D
37、(2,0,0),A(2,0,0),P(0,0,),C(2,4,0),B(2,4,0),M(1,2,),设平面PBD的一个法向量为,则由,得,取z=,得取平面PAD的一个法向量为cos=二面角BPDA的大小为60;(3)解:,平面BDP的一个法向量为直线MC与平面BDP所成角的正弦值为|cos|=|=|=7如图,在三棱锥PABC中,PA底面ABC,BAC=90点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2()求证:MN平面BDE;()求二面角CEMN的正弦值;()已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长【解答】()证明:取
38、AB中点F,连接MF、NF,M为AD中点,MFBD,BD平面BDE,MF平面BDE,MF平面BDEN为BC中点,NFAC,又D、E分别为AP、PC的中点,DEAC,则NFDEDE平面BDE,NF平面BDE,NF平面BDE又MFNF=F平面MFN平面BDE,则MN平面BDE;()解:PA底面ABC,BAC=90以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系PA=AC=4,AB=2,A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,设平面MEN的一个法向量为,由,得,取z=2,得由图可得平面CME的一个法向量
39、为cos=二面角CEMN的余弦值为,则正弦值为;()解:设AH=t,则H(0,0,t),直线NH与直线BE所成角的余弦值为,|cos|=|=|=解得:t=或t=当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或8如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120得到的,G是的中点()设P是上的一点,且APBE,求CBP的大小; ()当AB=3,AD=2时,求二面角EAGC的大小【解答】解:()APBE,ABBE,且AB,AP平面ABP,ABAP=A,BE平面ABP,又BP平面ABP,BEBP,又EBC=120,因此CBP=30; (
40、)解法一、取的中点H,连接EH,GH,CH,EBC=120,四边形BECH为菱形,AE=GE=AC=GC=取AG中点M,连接EM,CM,EC,则EMAG,CMAG,EMC为所求二面角的平面角又AM=1,EM=CM=在BEC中,由于EBC=120,由余弦定理得:EC2=22+22222cos120=12,因此EMC为等边三角形,故所求的角为60解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系由题意得:A(0,0,3),E(2,0,0),G(1,3),C(1,0),故,设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=2,得cos=二面角EAGC的大小为60根据企业发展战略的要求,有计划地对人力、资源进行合理配置,通过对企业中员工的招聘、培训、使用、考核、评价、激励、调整等一系列过程,调动员工地积极性,发挥员工地潜能,为企业创造价值,确保企业战略目标的实现。读书是一种感悟人生的艺术读杜甫的诗使人感悟人生的辛酸,读李白的诗使