《MATLAB统计工具箱中的基本统计命令.ppt》由会员分享,可在线阅读,更多相关《MATLAB统计工具箱中的基本统计命令.ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、一、数据的录入、保存和调用一、数据的录入、保存和调用 例例1 上海市区社会商品零售总额和全民所有制职工工资总额的数据如下:1年份数据以1为增量,用产生向量的方法输入. 命令格式: x=a:h:b t=78:872分别以x和y代表变量职工工资总额和商品零售总额.x=23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4 y=41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.03将变量t、x、y的数据保存在文件data中. save data t x y 4进行统计分析时,调用数据文件data中的数据.
2、 load dataTo MATLAB(txy)1输入矩阵:data=78,79,80,81,82,83,84,85,86,87,88; 23.8,27.6,31.6,32.4,33.7,34.9,43.2,52.8,63.8,73.4; 41.4,51.8,61.7,67.9,68.7,77.5,95.9,137.4,155.0,175.02将矩阵data的数据保存在文件data1中:save data1 data3 3进行统计分析时,先用命令:load data1 调用数据文件data1中的数据,再用以下命令分别将矩阵data的第一、二、三行的数据赋给变量t、x、y: t=data(1,:
3、) x=data(2,:) y=data(3,:)若要调用矩阵data的第j列的数据,可用命令: data(:,j)To MATLAB(data)返回返回二、基本统计量二、基本统计量对随机变量x,计算其基本统计量的命令如下:均值:mean(x)中位数:median(x)标准差:std(x) 方差:var(x)偏度:skewness(x) 峰度:kurtosis(x)例例 对例1中的职工工资总额x,可计算上述基本统计量.To MATLAB(tjl)返回返回三三、常见概率分布的函数常见概率分布的函数MATLAB工具箱对每一种分布都提供5类函数,其命令字符为:概率密度:pdf 概率分布:cdf逆概率
4、分布:inv 均值与方差:stat随机数生成:rnd (当需要一种分布的某一类函数时,将以上所列的分布命令字符与函数命令字符接起来,并输入自变量(可以是标量、数组或矩阵)和参数即可.)例例 2 画出正态分布) 1 , 0(N和)2 , 0(2N的概率密度函数图形.在MATLAB中输入以下命令:x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2);plot(x,y,x,z)1密度函数密度函数:p=normpdf(x,mu,sigma) (当mu=0,sigma=1时可缺省)To MATLAB(liti2)如对均值为mu、标准差为sigma的正态分布,举例如下:T
5、o MATLAB(liti3)3逆概率分布逆概率分布:x=norminv(P,mu,sigma). 即求出x ,使得PX50),按中心极限定理,它近似地 服从正态分布;二、使用MATLAB工具箱中具有特定分布总体的估计命令.(1)muhat, muci = expfit(X,alpha) 在显著性水平alpha下,求指数分布的数据X的均值的点估计及其区间估计.(2)lambdahat, lambdaci = poissfit(X,alpha) 在显著性水平alpha下,求泊松分布的数据X的参数的点估计及其区间估计.(3)phat, pci = weibfit(X,alpha) 在显著性水平al
6、pha下,求Weibull分布的数据X的参数的点估计及其区间估计.返回返回六、假设检验六、假设检验 在总体服从正态分布的情况下,可用以下命令进行假设检验.1总体方差总体方差 已知时,总体均值的检验使用已知时,总体均值的检验使用 z检验检验 h,sig,ci = ztest(x,m,sigma,alpha,tail)检验数据 x 的关于均值的某一假设是否成立,其中sigma 为已知方差, alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail = 0,检验假设“x 的均值等于 m ”tail = 1,检验假设“x 的均值大于 m ”tail =-1,检验假设“x 的均值小于
7、 m ”tail的缺省值为 0, alpha的缺省值为 0.05. 返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为均值的 1-alpha 置信区间.22总体方差总体方差 未知时,总体均值的检验使用未知时,总体均值的检验使用t 检验检验 h,sig,ci = ttest(x,m,alpha,tail)检验数据 x 的关于均值的某一假设是否成立,其中alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail = 0,检验假设“x 的均值等于 m ”tail = 1,检验假设“x 的均值大于 m ”tail =-1
8、,检验假设“x 的均值小于 m ”tail的缺省值为 0, alpha的缺省值为 0.05. 返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为均值的 1-alpha 置信区间.23两总体均值的假设检验两总体均值的假设检验使用使用 t 检验检验 h,sig,ci = ttest2(x,y,alpha,tail)检验数据 x ,y 的关于均值的某一假设是否成立,其中alpha 为显著性水平,究竟检验什么假设取决于 tail 的取值:tail = 0,检验假设“x 的均值等于 y 的均值 ”tail = 1,检验假设“x 的均值大于
9、y 的均值 ”tail =-1,检验假设“x 的均值小于 y 的均值 ”tail的缺省值为 0, alpha的缺省值为 0.05. 返回值 h 为一个布尔值,h=1 表示可以拒绝假设,h=0 表示不可以拒绝假设,sig 为假设成立的概率,ci 为与x与y均值差的的 1-alpha 置信区间.4非参数检验:总体分布的检验非参数检验:总体分布的检验MATLAB工具箱提供了两个对总体分布进行检验的命令:(1)h = normplot(x)(2)h = weibplot(x) 此命令显示数据矩阵x的正态概率图.如果数据来自于正态分布,则图形显示出直线性形态.而其它概率分布函数显示出曲线形态. 此命令显示数据矩阵x的Weibull概率图.如果数据来自于Weibull分布,则图形将显示出直线性形态.而其它概率分布函数将显示出曲线形态.返回返回