《2022年人教版七年级数学下册知识点大全.docx》由会员分享,可在线阅读,更多相关《2022年人教版七年级数学下册知识点大全.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 学习必备 欢迎下载人教版七年级数学下册学问点大全 第五章 相交线与平行线5.1.1 相交线 1、假如两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线 的交点;2、假如两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个 角互为邻补角;性质:邻补角互补; (两条直线相交有 4 对邻补角;)3、假如两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶 角;性质:对顶角相等; (两条直线相交,有 2 对对顶角;)5.1.2 垂线 4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线相互垂 直;其中一条直线
2、叫做另一条直线的垂线,它们的交点叫做垂足;5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段;(要找垂线段,先把点来看;过点画垂线,点足垂线段;)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足;7、垂线画法:放 :放直尺 ,直尺的一边要与已知直线重合 ; 靠 :靠三角板 ,把三角板的始终角边靠在直尺上 ; 移 :移动三角板到已知点 ; 画线 :沿着三角板的另始终角边画出垂线 . 8、垂线性质 1:过一点有且只有一条直线与已知直线垂直;9、过一点画已知线段 或射线 的垂线 ,就是画这条线段 或射线 所在直线的垂线 . 10、连接直线外一点与直线上各点的全部线段中,垂线段
3、最短;(垂线段最短 .)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;名师归纳总结 - - - - - - -第 1 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载5.1.3 同位角、同旁内角、内错角12、同位角:假如两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角;形如字母“F”;13、内错角:假如两个角分别在被截的两条直线之间(内)两侧(错),这样的一对角叫做内错角;形如字母“Z”;,并且分别在截线的14、同旁内角:假如两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫
4、做同旁内角;形如字母“U”;5.2.1 平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:ab;16、平行线画法:落;靠;移;画;17、在同一平面内,两条直线的位置关系:(工具 :三角板、直尺;)相交(垂直是相交的一种特别情形) ;平行;18、平行公理:经过直线外一点,有且只有一条直线与这条直线平行;19、推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行;5.2.2 平行线的判定20、判定方法 1:两条直线被第三条直线所截,假如同位角相等,那么这两条直 线平行;简洁说成:同位角相等,两直线平行;21、判定方法 2:两条直线被第三条直线所截,假如内错角相等,那么这两条直线
5、平行;简洁说成:内错角相等,两直线平行;22、判定方法 3:两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行;简洁说成:同旁内角互补,两直线平行;23、在同一平面内,假如两条直线都垂直于同一条直线,那么这两条直线平行;名师归纳总结 - - - - - - -第 2 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载5.3.1 平行线的性质 24、性质 1 两条平行线被第三条直线所截,同位角相等;简洁说成:两直线平 行,同位角相等;25、性质 2 两条平行线被第三条直线所截,内错角相等;简洁说成:两直线平 行,内错角相等;26、性质 3 两条平行线
6、被第三条直线所截,同旁内角互补;简洁说成:两直线 平行,同旁内角互补;27、平行线的性质与平行线的判定有什么区分?判定:已知角的关系得平行的关系; (证平行,用判定;)性质:已知平行的关系得角的关系; (知平行,用性质;)28、同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这 两条平行线的距离;5.3.2 命题、定理 29、判定一件事情的语句叫做命题;命题由题设和结论两部分组成;题设是已 知事项,结论是由已知事项推出的事项;30、命题常写成“ 假如 ,那么 ” 的形式;具有这种形式的命题中,用“ 假如” 开头的部分是题设,用“ 那么” 开头的部分是结论;31、假如命题中题设成立
7、, 那么结论肯定成立的命题叫做真命题; (正确的命题)32、命题中题设成立时,结论不肯定成立的命题叫做假命题;(错误的命题)33、经过推理证明的真命题叫做定理;5.4 平移 34、在同一平面内,将一个图形沿某始终线方向移动肯定距离,这样的图形变 换叫做平移;名师归纳总结 - - - - - - -第 3 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载35、平移的特点(性质) :把一个图形整体沿某始终线方向移动,图形的外形和大小完全相同;会得到一个新的图形, 新图形与原新图形中的每一点, 都是由原图形中的某一点移动后得到的,这两个点是 对应点,连接各组对应点
8、的线段平行且相等;第六章 平面直角坐标系 6.1.1 有序数对 36、有次序的两个数 a 与 b 组成的数对,叫做有序数对;37、数轴有水平的(左负右正)和垂直的(上正下负);38、有序数对一般看数:先看上下后看左右;6.1.2 平面直角坐标系 39、平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系;水平的 数轴称为 x 轴或横轴, 习惯上取向右为正方向; 竖直的数轴称为 y 轴或纵轴, 取 向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点;a,b),a 是横坐 40、平面上的任意一点都可以用一个有序数对来表示,记为(标, b 是纵坐标;41、原点的坐标是( 0,0);纵坐标相同
9、的点的连线平行于 x 轴;横坐标相同的点的连线平行于 y 轴;0,表示为( x,0);x 轴上的点的纵坐标为 y 轴上的点的横坐标为 0,表示为( 0,y);42、建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了、名师归纳总结 - - - - - - -第 4 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载四个部分,分别叫做第一象限、其次象限、第三象限和第四象限;坐标轴上的点 不属于任何象限;43、几个象限内点的特点:第一象限( +,+);其次象限(, +);第三象限(,);第四象限( +,);44、(x,y)关于原点对称的点是(x,y);(x,y)
10、关于 x 轴对称的点是( x, y);(x,y)关于 y 轴对称的点是( x,y);45、点到两轴的距离:点Px,y 到 x 轴的距离是 y;点 Px,y 到 y 轴的距离是 x;46、在第一、三象限角平分线上的点的坐标是(m,m);在其次、四象限叫平分线上的点的坐标是(m, m);6.2.1 用坐标表示地理位置 47、利用平面直角坐标系绘制区域内一些地点分布情形平面图的过程如下:建立坐标系,挑选一个适当的参照点为原点,确定x 轴、 y 轴的正方向;依据详细问题确定适当的比例尺,在坐标轴上标出单位长度;在坐标平面内画出这些点,写出各点的坐标和各个地点的名称;6.2.2 用坐标表示平移48、在平
11、面直角坐标系中,将点(x,y)向右(或左)平移 a 个单位长度,可以得到对应点( xa,y)(或( xa,y);将点( x,y)向上(或下)平移 b个单位长度,可以得到对应点(x,yb)(或( x,yb);(左右平移,纵不变,横左减右加;上下平移,横不变,纵上加下减;)49、在平面直角坐标系内,假如把一个图形各个点的横坐标都加(或减去)一名师归纳总结 - - - - - - -第 5 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载个正数 a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;假如把它各个点的纵坐标都加(或减去)一个正数 上(或向下
12、)平移 a 个单位长度;a,相应的新图形就是把原图形向(纵不变,横加向右,横减向左;横不变,纵加向上,纵减向下;)7.1.1 三角形的边 50、由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;51、相邻两边组成的角,叫做三角形的内角,简称三角形的角;52、顶点是 A、B、C 的三角形,记作“ ABC ”,读作“ 三角形ABC”;53、三边都相等的三角形叫做等边三角形;54、有两条边相等的三角形叫做等腰三角形;55、三边都不相等的三角形叫做不等边三角形;56、在等腰三角形中,相等的两边都叫做腰,另一边叫做底,两腰的夹角叫做 顶角,腰和底边的夹角叫做底角;57、等边三角形是特别的等
13、腰三角形,即底边和腰相等的等腰三角形;58、三角形按角的大小分类:锐角三角形、直角三角形、钝角三角形;三角形按边的相等关系分类:不等边三角形 等腰三角形(底边和腰不相等的等腰三角形和等边三角形)59、三角形(任意)两边的和大于第三边;60、三角形(任意)两边的差小于第三边;61、技巧:两较小线段之和大于第三条线段就能组成三角形;7.1.2 三角形的高、中线和角平分线名师归纳总结 - - - - - - -第 6 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载62、从ABC 的顶点 A 向它所对的边 BC 所在直线画垂线, 垂足为 D,所得线段AD 叫做 A
14、BC 的边 BC 上的高;(顶点 +垂足 =高)63、连接 ABC 的顶点和它所对的边BC 的中点 D,所得线段 AD 叫做 ABC 的边 BC 上的中线;(顶点 +中点=中线)64、画A 的平分线 AD,交所对的边 BC 于点 D,所得线段 AD 叫做 ABC 的角 平分线;(顶点 +交点=角平分线)7.1.3 三角形的稳固性 65、三角形具有稳固性;66、四边形具有不稳固性;7.2.1 三角形的内角 180;67、三角形内角和定理:三角形三个内角的和等于 7.2.2 三角形的外角 68、三角形的一边与另一边的延长线组成的角,叫做三角形的外角;69、三角形的一个外角等于与它不相邻的两个内角的
15、和;70、三角形的一个外角大于与它不相邻的任何一个内角;71、一个三角形有六个外角,每个顶点有两个外角,并且这两个外角是一对对 顶角;72、三角形的一个外角与它相邻的内角互补;73、在三角形的每个顶点处各取一个外角,这些外角的和叫做三角形的外角和;三角形的外角和是 3600;7.3.1 多边形 74、在平面内,由一些线段首尾顺次相接组成的图形叫做多边形;名师归纳总结 - - - - - - -第 7 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载75、多边形相邻两边组成的角叫做它的内角;76、多边形的边与它的邻边的延长线组成的角叫做多边形的外角;77、连接
16、多边形不相邻的两个顶点的线段,叫做多边形的对角线;78、n 边形的总对角线数公式:n 3n-2)个279、一个顶点有( n-3)条对角线,这( n-3)条对角线把多边形分成(三角形;80、各个角都相等,各条边都相等的多边形叫做正多边形;81、画出多边形的任何一条边所在直线,假如整个多边形都在这条直线的同一 侧,那么这个多边形就是凸多边形;7.3.2 多边形的内角和 82、n 边形的内角和公式:(n2) 1800 83、多边形的外角和等于 360;84、假如四边形的一组对角互补,那么另一组对角也互补;7.4 课题学习 镶嵌 85、用一些不重叠摆放的多边形把平面的一部分完全掩盖,通常把这类问题叫
17、做用多边形掩盖平面(或平面镶嵌)的问题;86、平面镶嵌的条件:拼接在同一个点的各个角的和恰好等于 3600;相邻的多边形有公共边;87、假如用一种多边形进行镶嵌,能镶嵌成一个平面图案的是任意三角形、任 意四边形和正六边形;第八章 二元一次方程组名师归纳总结 - - - - - - -第 8 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载8.1 二元一次方程组88、含有两个未知数,并且含有未知数的项的次数都是 方程;1 的方程叫做二元一次89、把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次 方程组;(共有两个未知数;每个方程都是一次方程;)
18、90、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解;(特点:一对数值;很多个解; )91、二元一次方程组的两个方程的公共解,叫做二元一次方程组的解;8.2 消元二元一次方程组的解法 92、将未知数的个数有多化少、逐一解决的思想,叫做消元思想;93、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表 示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解;这 种方法叫做代入消元法,简称代入法;94、用代入消元法解二元一次方程组的一般步骤:变形:挑选其中一个方程,把它变形为用含有一个未知数的代数式表示另一个未知数的形式;代入求解:把变形后的另一个方程带
19、入另一个方程中,消元后求出未知数 的值;名师归纳总结 回代求解:把求得的未知数的值代入到变形的方程中,求出另一个未知数 x a,第 9 页,共 14 页的值;yb写解:用的形式写出方程组的解 . - - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载95、列二元一次方程组解决实际问题的一般步骤:弄清题意,找出两个等量关系;设未知数;依据等量关系,列出方程组;解方程组;写答;96、两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边 分别相加或相减, 就能消去这个未知数, 得到一个一元一次方程; 这种方法叫做 加减消元法,简称加减法;97、两方
20、程相加减前,应先使要消去的未知数的系数相反或相等;98、用加减消元法解二元一次方程组的一般步骤:变形;加减求解;回代求解;写解;99、何时选用代入消元法?何时选用加减消元法?当一个方程中某个未知数的系数肯定值是1 时,用代入法比较简便;当两个未知数在两个方程中的系数肯定值相等或成整数倍时,用加减法比 较简便;8.4 三元一次方程组解法举例 100 、在方程组中含有三个相同的未知数,每个方程中含未知数的项的次数都是 1,并且一共有三个方程,像这样的方程组叫做三元一次方程组;第九章 不等式与不等式组 9.1.1 不等式及其解集 101 、用“ ” 或“ ” 号表示大小关系的式子叫做不等式;名师归纳
21、总结 - - - - - - -第 10 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载(有些不等式中含有未知数,有些不等式中不含未知数;)102 、不等式的符号统称不等号,有“ ”“ ” “ ”其中“ ” “ ”, 也是不等号其中,“ ” 表示,不大于、不超过,“ ” 表示不小于、不低于;103 、使不等式成立的未知数的值叫做不等式的解;104 、一个含有未知数的不等式的全部的解,组成这个不等式的解集;105 、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个 数都是不等式的解;106 、用数轴表示解集:在数轴上标出某一区间,其中的点对应
22、的数值都是不等 式的解;方向线向左表示小于,方向线向右表示大于;空心圆圈表示不包括;实心圆圈表示包括;107 、用数轴表示解集的步骤:画数轴;找点;定向;画线;108 、求不等式的解集的过程叫做解不等式;109 、含有一个未知数,未知数的次数是1 的不等式,叫做一元一次不等式;9.1.2 不等式的性质110 、不等式的性质 1 不等式两边加(或减)同一个数(或式子) ,不等号的方向不变;假如 ab,那么 acbc;111 、不等式的性质 2 不等式两边乘(或除以)同一个正数,不等号的方向不变; 假如 ab,c0,那么 acbc(或 a b );c c112 、不等式的性质 3 不等式两边乘(或
23、除以)同一个负数,不等号的方向改变;假如 ab,c0,那么 acbc(或 a b );c c113 、解未知数为 x 的不等式,就是要使不等式逐步化为xa 或 xa 的形式;名师归纳总结 - - - - - - -第 11 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载114 、解不等式时也可以“ 移项”,即把不等式一边的某项变号后移到另一边,而不转变不等号的方向;115 、解不等式时要留意未知数系数的正负,以打算是否转变不等号的方向;9.2 实际问题与一元一次不等式116 、解一元一次方程,要依据等式的性质,将方程逐步化为 xa 的形式;而解一元一次不等
24、式, 就要依据不等式的性质, 将不等式逐步化为 xa(或 xa)的形式;9.3 一元一次不等式组117 、把几个不等式合起来,就组成了一个一元一次不等式组;118 、几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集;解不等式就是求它的解集;119 、对于具有多种不等关系的问题,可通过不等式组解决;解一元一次不等式组时;一般先求出其中各不等式的解集,可以直观地表示不等式组的解集;再求出这些解集的公共部分, 利用数轴第十章 数据的收集、整理与描述 10.1 统计调查 120 、收集、整理、描述和分析数据是数据处理的基本过程;121 、用划记法记录数据, “ 正” 字的每一划(笔画)代表一
25、个数据;122 、考察全体对象的调查属于全面调查;123 、扇形图通过扇形的大小来反映各个部分占总体的百分比;扇形的大小是由 扇形所对的圆心角打算的; 扇形所对圆心角的度数就是各个扇形占总体的百分比名师归纳总结 - - - - - - -第 12 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载乘以 3600;124 、画扇形图时,用圆代表总体,每一个扇形代表总体中的一部分;125 、抽样调查只是抽取一部分对象进行调查,然后依据调查数据推断全体对象 的情形;126 、要考察的全体对象称为总体,组成总体的每一个考察对象称为个体,被抽 取的那些个体组成一个样本,
26、样本中个体的数目称为样本容量;127 、总体中的每一个个体都有相等的机会被抽到,叫做简洁随机抽样;128 、统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际 中经常采纳抽样调查的方式;调查时,可用不同的方法获得数据;除问卷调查、拜访调查等外,查阅文献资料和试验也是获得数据的有效方法;129 、全面调查和抽样调查是收集数据的两种方式;全面调查收集到的数据全面、精确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点, 但抽取的样本是否具有代表性,程度;直接关系到总体估量的精确130 、先将总体中的个体按某一特点分分层,然后在各个层中进行简洁随机抽样,
27、这种调查方法叫做分成随机抽样;131 、在总体中个体之间差异较大且数目较多的情形下要用分层随机抽样法;132 、条形图的特点:能清晰的显示每组中的详细数目;133 、扇形图的特点:能清晰的显示每组数据占总体的百分比;134 、折线图的特点:能清晰的反映事物的变化情形;10.2 直方图 135 、画频数分布直方图的一般步骤:名师归纳总结 - - - - - - -第 13 页,共 14 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载运算最大值与最小值的差(目的:反映这组数据的变化范畴);打算组距和组数;列频数分布表;画频数分布直方图;136 、把全部数据分成如干组,每个小
28、组的两个端点之间的距离称为组距;137 、组数 =(最大值 -最小值) 组距 138 、对落在各个小组内的数据进行累计,得到各个小组内的数据的个数叫做频 数;139 、分组、分点时,一般每组数据取值含左端点,不含右端点,数据不重不漏;140 、一般频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的大小;小长方形的高是频数与组距的比值;小长方形的面积 =组距 (频数 组距) =频数 141、画等距分组的频数分布直方图时,为画图与看图便利,通常直接用小长方 形的高表示频数;小长方形的面积 =频数 组距;142、直方图的特点:能够显示各组频数分布情形;易于显示各组之间频数 之间的差别;143、频数折线图:第一取直方图中每一个长方形上边的中点,然后在横轴上直 方图的左右取两个频数为 0 的点,它们分别与直方图左右相距半个组距;144、直方图与条形图的区分与联系:条形图是用长方形的高表示各类别频数的多少,其宽度是固定的; 直方图是用长方形的面积表示各组频数的多少,长方形的宽表示各组的组距;分组数据具有连续性, 直方图各长方形之间没有间隙,分开排列,中间有间隙;而条形图的各长方形是名师归纳总结 - - - - - - -第 14 页,共 14 页