离散数学作业7答案(数理逻辑部分).doc

上传人:豆**** 文档编号:27142896 上传时间:2022-07-22 格式:DOC 页数:33 大小:452KB
返回 下载 相关 举报
离散数学作业7答案(数理逻辑部分).doc_第1页
第1页 / 共33页
离散数学作业7答案(数理逻辑部分).doc_第2页
第2页 / 共33页
点击查看更多>>
资源描述

《离散数学作业7答案(数理逻辑部分).doc》由会员分享,可在线阅读,更多相关《离散数学作业7答案(数理逻辑部分).doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date离散数学作业7答案(数理逻辑部分)离散数学形成性考核作业(三)姓 名: 学 号: 得 分: 教师签名: 离散数学作业7离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识

2、点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。要求:将此作业用A4纸打印出来,并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿)一、填空题1命题公式的真值是 1 2设P:他生病了,Q:他出差了R:我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为 PQR 3含有三个命题变项P,Q,R的命题公式PQ的主析取范式是 (PQR) (PQR) 4设P(x):x是人,Q(x):x去上课,则命题“有人去上课” 可符号化为

3、 x ( P ( x) Q ( x) 5设个体域Da, b,那么谓词公式消去量词后的等值式为 (A(a) A(b) (B(a) B(b) 6设个体域D1, 2, 3,A(x)为“x大于3”,则谓词公式($x)A(x) 的真值为 0 7谓词命题公式(x)(A(x)B(x) C(y)中的自由变元为 y 8谓词命题公式(x)(P(x) Q(x) R(x,y)中的约束变元为 x 三、公式翻译题 1请将语句“今天是天晴”翻译成命题公式解:设P:今天是天晴则该语句符号化为 P 2请将语句“小王去旅游,小李也去旅游”翻译成命题公式 设P:小王去旅游,Q:小李也去旅游则该语句符号化为 PQ 3请将语句“如果明

4、天天下雪,那么我就去滑雪”翻译成命题公式解:设P:明天天下雪 Q:我就去滑雪则该语句符号化为 PQ 4请将语句“他去旅游,仅当他有时间”翻译成命题公式解:设P:他去旅游 Q:他有时间则该语句符号化为 PQ 5请将语句 “有人不去工作”翻译成谓词公式解:设P(x):x是人 Q(x):x不去工作则谓词公式为 (x)(P(x)Q(x) 6请将语句“所有人都努力工作”翻译成谓词公式解:设P(x):x是人 Q(x):x努力工作则谓词公式为 (x)(P(x) Q(x)四、判断说明题(判断下列各题,并说明理由) 1命题公式PP的真值是1不正确,PP的真值是0,它是一个永假式,命题公式中的否定律就是PP=F

5、2命题公式P(PQ)P为永真式 正确可以化简P(PQ)P=P(PQ)P=PP=1,所以它是永真式当然方法二是用真值表 3谓词公式是永真式正确xP(x) (yG(x,y) xP(x)=xP(x) (yG(x,y) xP(x)=xP(x) (y(G(x,y) xP(x)=xP(x) (y(G(x,y) xP(x)=xP(x) y(G(x,y) xP(x)=xP(x) xP(x) y(G(x,y)=1y(G(x,y)=1所以该式是永真式 4下面的推理是否正确,请给予说明(1) (x)A(x) B(x) 前提引入(2) A(y) B(y) US (1)不正确,(1)中()x的辖域仅是A(x),而不是A

6、(x) B(x)四计算题1 求PQR的析取范式,合取范式、主析取范式,主合取范式解:P(QR)= PQR所以合取范式和析取范式都是PQR所以主合取范式就是PQR所以主析取范式就是(PQ R) (PQ R) (PQ R) (PQ R) (PQ R) (PQ R) (PQ R)2求命题公式(PQ)(RQ) 的主析取范式、主合取范式解:(PQ)(RQ)= (PQ) (RQ)= (PQ) (RQ)其中(PQ)= (PQ) (RR)= (PQ R) (PQ R)其中(RQ)= (RQ) (PP)= (PQ R) (PQ R)所以原式=(PQ R) (PQ R) (PQ R) (PQ R) =(PQ R)

7、 (PQ R) (PQ R) = (PQ R) (PQ R) (PQ R)=m2m3m7这就是主析取范式所以主合取范式为M0 M1 M4 M5 M6可写为(PQR) (PQR) (PQR) (PQR) (PQR)3设谓词公式(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元解:(1)量词$x的辖域为 P(x,y) (z)Q(y,x,z) 量词z的辖域为Q(y,x,z) 量词y的辖域为R(y,x)(2) P(x,y)中的x是约束变元,y是自由变元 Q(y,x,z)中的x和z是约束变元,y是自由变元 R(y,x)中的x是自由变元,y是约束变元 4设个体域为D=a1, a2,求谓词公式y$

8、xP(x,y)消去量词后的等值式;解: y$xP(x,y)= $xP(x, a1) $xP(x, a2)=( P(a1, a1) P(a2, a1) ( P(a1, a2) P(a1, a2)五、证明题 1试证明 (P(QR)PQ与 (PQ)等价 证:(P(QR)PQ(P(QR)PQ (PQR)PQ (PPQ)(QPQ)(RPQ) (PQ)(PQ)(PQR) PQ (吸收律) (PQ) (摩根律)2试证明($x)(P(x) R(x)($x)P(x) ($x)R(x)证明: (1) ($x)(P(x) R(x) P(2) P(a) R(a) ES(1)(3) P(a) T(2)(4) ($x)P(x) EG(3)(5) R(a) T(2)(6) ($x) R(x) EG(5)(7) ($x)(P(x) R(x) T(4)(6)-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁