《激光的基础知识(共4页).doc》由会员分享,可在线阅读,更多相关《激光的基础知识(共4页).doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上 激光的基础知识相信激光这名词对大家来说一点也不陌生。在日常生活中,我们常常接触到激光,例如在课堂上我们所用的激光指示器,与及在计算机或音响组合中用来读取光盘资料的光驱等等。在工业上,激光常用于切割或微细加工。在军事上,激光被用来拦截导弹。科学家也利用激光非常准确地测量了地球和月球的距离,涉及的误差只有几厘米。激光的用途那么广泛,究竟它有哪些特点,又是如何产生的呢?以下我们将会阐释激光的基本特点和基本原理。激光的特性高亮度、高方向性、高单色性和高相干性是激光的四大特性。 (1)激光的高亮度:固体激光器的亮度更可高达 1011W/cn2Sr 。不仅如此,具有高亮度的激光
2、束经透镜聚焦后,能在焦点附近产生数千度乃至上万度的高温,这就使其可能可加工几乎所有的材料。 (2)激光的高方向性:激光的高方向性使其能在有效地传递较长距离的同时,还能保证聚焦得到极高的功率密度,这两点都是激光加工的重要条件。 (3)激光的高单色性:由于激光的单色性极高,从而保证了光束能精确地聚焦到焦点上,得到很高的功率密度。 (4)激光的高相干性:相干性主要描述光波各个部分的相位关系。正是激光具有如上所述的奇异特性因此在生活、工业加工、军事、科研等领域中得到了广泛地应用。 激光产生原理图一 碳原子示意图。激光的发展有很长的历史,它的原理早在 1917 年已被著名的物理学家爱因斯坦发现,但要直到
3、 1958 年激光才被首次成功制造。激光英文名是 Laser,即 Light Amplification by the Stimulated Emission of Radiation 的缩写。激光的英文全名已完全表达了制造激光的主要过程。但在阐释这个过程之前,我们必先了解物质的结构,与及光的辐射和吸收的原理。物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的能级,不同的能级对应于不同的电子能
4、量。为了简单起见,我们可以如图一所示,把这些能级想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道 (也是最近原子核的轨道) 最多只可容纳 2 个电子,较高的轨道则可容纳 8 个电子等等。事实上,这个过份简化了的模型并不是完全正确的 ,但它足以帮助我们说明激光的基本原理。图二原子内电子的跃迁过程。电子可以透过吸收或释放能量从一个能级跃迁至另一个能级。例如当电子吸收了一个光子 时,它便可能从一个较低的能级跃迁至一个较高的能级 (图二 a)。同样地,一个位于高能级的电子也会透过发射一个光子而跃迁至较低的能级 (图二 b)。在这些过程中
5、,电子吸收或释放的光子能量总是与这两能级的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式 (1)自发吸收 - 电子透过吸收光子从低能阶跃迁到高能阶 (图二 a)。 (2)自发辐射 - 电子自发地透过释放光子从高能阶跃迁到较低能阶 (图二 b)。 (3)受激辐射 - 光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子
6、与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子 (图二 c)。激光基本上就是由第三种跃迁机制所产生的。图三粒子数反转的状态。产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例 (图三),原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约 10-7秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是 10-3秒或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受激辐射由亚稳
7、态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。激光器的结构激光器一般包括三个部分。1、激光工作介质激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转世非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外道远红外,非常广泛。2、激励源为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作
8、介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。3、谐振腔有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块光大部分反射、少量透射出去,以使激光可透过这块镜子而射出。被反射回到工作介质的光,继续诱发新的受激辐射,光被放大。因此,光在谐振腔中来回振荡,造成连锁反应,雪崩似的获得放大,产生强烈的激光,从部分反射镜子一端输出。下面
9、以红宝石激光器为例来说明激光的形成。工作物质是一根红宝石棒。红宝石是掺入少许3价铬离子的三氧化二铝晶体。实际是掺入质量比约为0.05%的氧化铬。由于铬离子吸收白光中的绿光和蓝光,所以宝石呈粉红色。1960年梅曼发明的激光器所产用的红宝石是一根直径0.8cm、长约8cm的圆棒。两端面是一对平行平面镜,一端镀上全反射膜,一端有10%的透射率,可让激光透出。图四激光器结构图红宝石激光器中,用高压氙灯作“泵浦”,利用氙灯所发出的强光激发铬离子到达激发态E3,被抽运到E3上的电子很快(10-8s)通过无辐射跃迁到E2。E2是亚稳态能级,E2到E1的自发辐射几率很小,寿命长达10-3s,即允许粒子停留较长
10、时间。于是,粒子就在E2上积聚起来,实现E2和E1两能级上的粒子数反转。从E2到E1受激发射的波长是694.3nm的红色激光。由脉冲氙灯得到的是脉冲激光,每一个光脉冲的持续时间不到1ms,每个光脉冲能量在10J以上;也就是说,每个脉冲激光的功率可超过10kW的数量级。注意到上述铬离子从激发到发出激光的过程中涉及到三条能级,故称为三能级系统。由于在三能级系统中,下能级E1是基态,通常情况下积聚大量原子,所以要达到粒子数反转,要有相当强的激励才行。从上面的叙述中我们注意到,激光器要工作必须具备三个基本条件,即激光物质、光谐振器和泵浦源,其基本结构如图四所示。通过泵浦源将能量输入激光物质,使其实现粒
11、子数反转,由自发辐射产生的微弱的光在激光物质中得以放大,由于激光物质两端放置了反射镜,有一部分符合条件的光就能够反馈回来再 参加激励,这时被激励的光就产生振荡,经过多次激励,从右端反射镜中投射出来的光就是单色性、方向性、相干性都很好的高亮度的激光。不同类型的激光器在发光物质、反射镜以及泵浦源等方面所用材料有所区别,下文提到的各种激光器也正是基于这些不同进行分类的。激光器的种类对激光器有不同的分类方法,一般按工作介质的不同来分类,在可以分为固体激光器、气体激光器、液体激光器和半导体激光器。1、固体激光器一般讲,固体激光器具有器件小、坚固、使用方便、输出功率大的特点。这种激光器的工作介质是在作为基
12、质材料的晶体或玻璃中均匀掺入少量激活离子,除了前面介绍用红宝石和玻璃外,常用的还有钇铝石榴石(YAG)晶体中掺入三价钕离子的激光器,它发射1060nm的近红外激光。固体激光器一般连续功率可达100W以上,脉冲峰值功率可达109W。2、气体激光器气体激光器具有结构简单、造价低;操作方便;工作介质均匀,光束质量好;以及能长时间较稳定地连续工作的有点。这也是目前品种最多、应用广泛的一类激光器,占有市场达60左右。其中,氦氖激光器是最常用的一种。3、半导体激光器半导体激光器是以半导体材料作为工作介质的。目前较成熟的是砷化镓激光器,发射840nm的激光。另有掺铝的砷化镓、硫化铬硫化锌等激光器。激励方式有
13、光泵浦、电激励等。这种激光器体积小、质量轻、寿命长、结构简单而坚固,特别适于在飞机、车辆、宇宙飞船上用。在70年代末期,由于光纤通讯和光盘技术的发展大大推动了半导体激光器的发展。4、液体激光器常用的是染料激光器,采用有机染料为工作介质。大多数情况是把有机染料溶于溶剂中(乙醇、丙酮、水等)中使用,也有以蒸气状态工作的。利用不同染料可获得不同波长激光(在可见光范围)。染料激光器一般使用激光作泵浦源,例如常用的有氩离子激光器等。液体激光器工作原理比较复杂。输出波长连续可调,且覆盖面宽是它的优点,使它也得到广泛应用。激光简史和我国的激光技术自爱因斯坦1917年提出受激辐射概念后,足足经过了40年,直到
14、1958年,美国两位微波领域的科学家汤斯(C.H.Townes)和肖洛(A.I.Schawlaw)才打破了沉寂的局面,发表了著名论文红外与光学激射器,指出了受激辐射为主的发光的可能性,以及必要条件事实现“粒子数反转”。他们的论文史在光学领域工作的科学家马上兴奋起来,纷纷提出各种实现粒子数反转的实验方案,从此开辟了崭新的激光研究领域。同年苏联科学家巴索夫和普罗霍罗夫发表了实现三能级粒子数反转和半导体激光器建议论文,1959年9月汤斯又提出了制造红宝石激光器的建议1960年5月15日加州休斯实验室的梅曼(T.H.Maiman)制成了世界上第一台红宝石激光器,获得了波长为694.3nm的激光。梅曼是
15、利用红宝石进体做发光材料,用发光密度很高的脉冲氙灯做激发光源(如图所示),实际他的研究早在1957年就开始了,多年的努力终于活动了历史上第一束激光。1964年,汤斯、巴索夫和普罗霍夫由于对激光研究的贡献分享了诺贝尔物理学奖。中国第一台红宝石激光器于1961年8月在中国科学院长春光学精密机械研究所研制成功。这台激光器在结构上比梅曼所设计的有了新的改进,尤其是在当时我国工业水平比美国低得多,研制条件十分困难,全靠研究人员自己设计、动手制造。在这以后,我国的激光技术也得到了迅速发展,并在各个领域得到了广泛应用。1987年6月,1012W的大功率脉冲激光系统神光装置,在中国科学院上海光学精密机械研究所研制成功,多年来为我国的激光聚变研究作出了很好的贡献。思考题:1、激光和我们生活中普通光有什么区别?2、请列举你生活中用到激光的地方。专心-专注-专业