《肥西县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(共18页).doc》由会员分享,可在线阅读,更多相关《肥西县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(共18页).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选优质文档-倾情为你奉上肥西县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 中,“”是“”的( )A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力.2 某程序框图如图所示,该程序运行输出的k值是( )A4B5C6D73 常用以下方法求函数y=f(x)g(x)的导数:先两边同取以e为底的对数(e2.71828,为自然对数的底数)得lny=g(x)lnf(x),再两边同时求导,得y=g(x)lnf(x
2、)+g(x)lnf(x),即y=f(x)g(x)g(x)lnf(x)+g(x)lnf(x)运用此方法可以求函数h(x)=xx(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah()Bh()Ch()Dh()4 已知命题:对任意,命题:存在,使得,则下列命题为真命题的是( )A B C D5 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力6 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?7 487被7除的余数为a(0a7),则展开式
3、中x3的系数为( )A4320B4320C20D208 等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非9 若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D1210已知函数,其中,为自然对数的底数当时,函数的图象不在直线的下方,则实数的取值范围( )ABCD【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用11已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD12执行如图所示的
4、程序框图,如果输入的t10,则输出的i( )A4 B5C6 D7二、填空题13用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.14若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是15命题“若a0,b0,则ab0”的逆否命题是(填“真命题”或“假命题”)16要使关于的不等式恰好只有一个解,则_.【命题意图】本题考查一元二次不等式等基础知识,
5、意在考查运算求解能力.17已知函数,则_;的最小值为_18定义:分子为1且分母为正整数的分数叫做单位分数我们可以把1拆分为无穷多个不同的单位分数之和例如:1=+,1=+,1=+,依此方法可得:1=+,其中m,nN*,则m+n=三、解答题19如图,在四边形ABCD中,DAB=90,ADC=135,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积20如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离
6、 21一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.22已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 23【常熟中学201
7、8届高三10月阶段性抽测(一)】已知函数.(1)若函数是单调递减函数,求实数的取值范围;(2)若函数在区间上既有极大值又有极小值,求实数的取值范围.24已知a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC(I)求C的值;()若c=2a,b=2,求ABC的面积肥西县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A.【解析】在中,故是充分必要条件,故选A.2 【答案】 C【解析】解:程序在运行过程中各变量的值如下表示:S k 是否继续循环循环前 100 0/第一圈10020 1 是第二圈1002021 2 是第六圈1002021
8、222324250 6 是则输出的结果为7故选C【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模3 【答案】B【解析】解:(h(x)=xxxlnx+x(lnx)=xx(lnx+1),令h(x)0,解得:x,令h(x)0,解得:0x,h(x)在(0,)递减,在(,+)递增,h()最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的
9、考查4 【答案】D【解析】考点:命题的真假.5 【答案】A【解析】6 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查7 【答案】B 解析:解:487=(491)7=+1,487被7除的余数为a(0a7),a=6,展开式的通项为Tr+1=,令63r=3,可得r=3,展开式中x3的系数为
10、=4320,故选:B.8 【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C9 【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力10【答案】B【解析】由题意设,且在时恒成立,而令,则,所以在上递增,所以当时,在上递增,符合题意;当时,在上递减,与题意不合;当时,为一个递增函数,而,由零点存在性定理,必存在一个零点,使得,当时,从而在上单调递减,从而,与题意不合,综上所述:
11、的取值范围为,故选B 11【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题12【答案】【解析】解析:选B.程序运行次序为第一次t5,i2;第二次t16,i3;第三次t8,i4;第四次t4,i5,故输出的i5.二、填空题13【答案】48【解析】14【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的
12、圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题15【答案】真命题 【解析】解:若a0,b0,则ab0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键16【答案】. 【解析】分析题意得,问题等价于只有一解,即只有一解,故填:.17【答案】【解析】【知识点】分段函数,抽象函数与复合函数【试题解析】当时,当时,故的
13、最小值为故答案为: 18【答案】33 【解析】解:1=+,2=12,6=23,30=56,42=67,56=78,72=89,90=910,110=1011,132=1112,1=+=(1)+()+,+=+=,m=20,n=13,m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题三、解答题19【答案】 【解析】解:四边形ABCD绕AD旋转一周所成的几何体,如右图:S表面=S圆台下底面+S圆台侧面+S圆锥侧面=r22+(r1+r2)l2+r1l1=20【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NE
14、OC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为方法二(向量法)作APCD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),O(0,0,2),M(0,0,1),(1),设平面OCD
15、的法向量为n=(x,y,z),则=0, =0即取,解得=(,1)(0,4,)=0,MN平面OCD(2)设AB与MD所成的角为,AB与MD所成角的大小为(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d=所以点B到平面OCD的距离为【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力21【答案】(1)小时;(2)【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.在中,.由余弦定理得:,所以,化简得,解得或(舍去).所以,海难搜救艇追上客轮所需时间为小时.(2)由,.在中,由正弦定理得.所以角的正弦
16、值为.考点:三角形的实际应用【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键22【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=
17、kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPO
18、Q不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题23【答案】(1);(2).【解析】试题分析:(1)原问题等价于对恒成立,即对恒成立,结合均值不等式的结论可得;(2)由题意可知在上有两个相异实根,结合二次函数根的分布可得实数的取值范围是.试题解析:(2)函数在上既有极大值又有极小值,在上有两个相异实根,即在上有两个相异实根,记,则,得,即.24【答案】 【解析】解:(I)a,b,c分别是ABC内角A,B,C的对边,且csinA=acosC,sinCsinA=sinAcosC,sinCsinAsinAcosC=0,sinC=cosC,tanC=,由三角形内角的范围可得C=;()c=2a,b=2,C=,由余弦定理可得c2=a2+b22abcosC,4a2=a2+124a,解得a=1+,或a=1(舍去)ABC的面积S=absinC=专心-专注-专业