《2019-2020学年新培优同步人教B版高中数学必修一练习:第2章 函数 检测B .docx》由会员分享,可在线阅读,更多相关《2019-2020学年新培优同步人教B版高中数学必修一练习:第2章 函数 检测B .docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1设函数f(x)=x2+1,x1,2x,x1,则f(f(3)等于()A.15B.3C.23D.139解析因为31,所以f(3)=23.又因为231,所以f23=232+1=139.所以f(f(3)=f23=139,故选D.答案D2已知函数f(x)=1x2+mx,且f(1)=-1,则f(x)的定义域是()A.(0,2)B.(-,0)(0,+)C.(-,-2)(2,+)D.(-,0)(0,2)(2,+)解析由f(1)=-1可得11+m=-1,解得m
2、=-2,故f(x)=1x2-2x.令x2-2x0得x0,且x2,即f(x)的定义域为(-,0)(0,2)(2,+).答案D3若函数f(x)=(ax+1)(x-a)为偶函数,且当x(0,+)时,函数y=f(x)为增函数,则实数a的值为()A.1B.-1C.1D.0解析函数f(x)=(ax+1)(x-a)=ax2+(1-a2)x-a为偶函数,f(-x)=f(x),即f(-x)=ax2-(1-a2)x-a=ax2+(1-a2)x-a.1-a2=0,解得a=1.当a=1时,f(x)=x2-1,在(0,+)内为增函数,满足条件.当a=-1时,f(x)=-x2+1,在(0,+)内为减函数,不满足条件.故a
3、=1.答案C4函数f(x)对于任意xR,都有f(x+1)=2f(x),当0x1时,f(x)=x(1-x),则f(-1.5)的值是()A.116B.18C.14D.-154解析2f(-1.5)=f(-1.5+1)=f(-0.5),2f(-0.5)=f(0.5).又f(0.5)=0.5(1-0.5)=14,f(-1.5)=14f(0.5)=116.答案A5设f(x)是奇函数且在(0,+)内为减函数,f(2)=0,则满足不等式3f(-x)-2f(x)5x0的x的取值范围是()A.(-,-2)(0,2)B.(-2,0)(2,+)C.(-,-2)(2,+)D.(-2,0)(0,2)解析因为f(x)是奇函
4、数,所以f(-x)=-f(x),所以-3f(x)-2f(x)5x0,即xf(x)0.f(x)的函数图象示意图如图所示,故xf(x)0时,x的取值范围是(-2,0)(0,2).答案D6已知函数f(x)=ax+bx+1,若f(1)=12,f(2)=1,则函数f(x)的值域是()A.(-,2)B.(2,+)C.(-,2)(2,+)D.(-,-2)(-2,+)解析由f(1)=12,f(2)=1可得a+b2=12,2a+b3=1,解得a=2,b=-1,即f(x)=2x-1x+1.故f(x)=2x+2-3x+1=2-3x+1.当x-1时,3x+10,即2-3x+12.故函数f(x)的值域是(-,2)(2,
5、+).答案C7若abc,则函数f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)的两个零点分别位于区间()A.(a,b)和(b,c)内B.(-,a)和(a,b)内C.(b,c)和(c,+)内D.(-,a)和(c,+)内解析由题意ab0,f(b)=(b-c)(b-a)0.显然f(a)f(b)0,f(b)f(c)x11时,f(x2)-f(x1)(x2-x1)abB.cbaC.acbD.bac解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+)上是减函数.由a=f-12=f52,故bac.答案D10设f(x)=3-2|x|,g(x)=x2-2x,F(x)=g(
6、x),f(x)g(x),f(x),f(x)0,f(a)=15,则a=.解析若当a0时,有f(a)=a2-1=15,解得a=-4(a=4舍去);若当a0时,有f(a)=-3a=15,解得a=-5舍去.综上可知,a=-4.答案-412用二分法求方程x3+4=6x2的一个近似解时,已经将一个根锁定在区间(0,1)内,则下一步可断定此根所在的区间为.解析设f(x)=x3-6x2+4,显然f(0)0,f(1)0,所以下一步可断定方程的根所在的区间为12,1.答案12,113已知函数f(x)=x2-6x+8,x1,a的最小值为f(a),则实数a的取值范围是.解析函数f(x)=x2-6x+8在(-,3上是减
7、函数,3,+)上是增函数.f(x)=x2-6x+8在1,a上最小值为f(a),1,a(-,3,1a3.答案(1,314在如图所示的锐角三角形空地上,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为m.解析如图所示,设DE=x m,MN=y m,由三角形相似得,x40=ADAB=ANAM=40-y40,即x40=40-y40,得x+y=40,即y=40-x(0x40).故S=xy=x(40-x)=-x2+40x,当x=20时,S取最大值.答案2015已知函数f(x)=x2+4x,x0,4x-x2,xf(3a),则实数a的取值范围是.解析画出函数f(x)的图象如图所示,由图象可知f(x)在
8、R上是增函数,由f(4-5a)f(3a)可得4-5a3a,解得a0,解得a0.(1)求f(1)的值;(2)若f(x+6)2,求x的取值范围.解(1)在f(x1x2)=f(x1)+f(x2)中,令x1=1,得f(x2)=f(1)+f(x2),故f(1)=0.(2)在f(x1x2)=f(x1)+f(x2)中,令x1=x2=4,得f(16)=f(4)+f(4)=2.因为当x1x2时,f(x2)-f(x1)x2-x10,所以f(x)在(0,+)内是增函数.又因为f(x+6)2,所以f(x+6)f(16),即x+616,解得x10.故x的取值范围是(10,+).18(9分)已知函数f(x)=x|x-a|
9、(aR).(1)当a=2时,在给定的平面直角坐标系中作出f(x)的图象,并写出f(x)的单调区间;(2)当a=-2时,求函数y=f(x)在区间(-2-1,2上的值域.解(1)当a=2时,f(x)=x|x-2|=x2-2x,x2,-x2+2x,x2,函数f(x)的图象如图所示,由图象可知,f(x)的单调递增区间是(-,1和2,+),单调递减区间是1,2.(2)当a=-2时,f(x)=x|x+2|=x2+2x,x-2,-x2-2x,x0).(2)该班学生买饮料每年总费用为51120=6 120(元),当y=380时,380=-40x+720,得x=8.5,该班学生集体饮用桶装纯净水的每年总费用为3808.5+228=3 458(元),故饮用桶装纯净水的年总费用少.(3)设该班每年购买纯净水的费用为P元,则P=xy=x(-40x+720)=-40(x-9)2+3 240,故当x=9时,Pmax=3 240.要使饮用桶装纯净水的年总费用一定不会超过该班全体学生购买饮料的年总费用,则51aPmax+228,解得a68,故a至少为68时全班饮用桶装纯净水的年总费用一定不会超过该班全体学生购买饮料的年总费用.