初中三角形知识点讲解专题.doc

上传人:豆**** 文档编号:27086527 上传时间:2022-07-22 格式:DOC 页数:29 大小:293KB
返回 下载 相关 举报
初中三角形知识点讲解专题.doc_第1页
第1页 / 共29页
初中三角形知识点讲解专题.doc_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《初中三角形知识点讲解专题.doc》由会员分享,可在线阅读,更多相关《初中三角形知识点讲解专题.doc(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date初中三角形知识点讲解专题初中三角形知识点讲解专题初中三角形知识点讲解知识点梳理 考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类.三角形(按边分)三角形(按角分) 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段三角形的中线:顶点与对边中点的连线,三条中线交

2、点叫重心三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质 定理:三角形的内角和等于180. 推论1:直角三角形的两个锐角互补。 推论2:三角形的一个外角等于不相邻的两个内角的和。 推论3:三角形的一个外角大于与它不相邻的任何一个内角。7、多边形的外角和恒为3608、多边形及多边形的对角线正多边形:各个角都相等,各条边都相等的多边形叫做正多边形凸凹多边形:画出多边形的任何一条边所在的直线

3、,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。多边形的对角线的条数:A.从n边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。B.n边形共有条对角线。9、多边形的内角和公式及外角和多边形的内角和等于(n-2)180(n3)。多边形的外角和等于360。10、平面镶嵌及平面镶嵌的条件。平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360。考点二、全等三角形1、全等三角形的概念能够完全重合的两个三

4、角形叫做全等三角形。2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三

5、种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。(2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。考点三、等腰三角形 1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。推论2:等边三角形的各个角都相等,并且每个角都等于60。2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。(1)三角形共有三条中位线,并且它们又重新

6、构成一个新的三角形。(2)要会区别三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论2:三条中位线将原三角形分割成四个全等的三角形。结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论4:三角形一条中线和与它相交的中位线互相平分。结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。考点四、直角三角形1、直角三角形的两个锐角互余2、在直

7、角三角形中,30角所对的直角边等于斜边的一半。3、直角三角形斜边上的中线等于斜边的一半4、直角三角形两直角边a,b的平方和等于斜边c的平方,即5、射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90 CDAB 6、常用关系式由三角形面积公式可得:ABCD=ACBC考点11.关于三角形的边的叙述正确的是 ( )A、三边互不相等 B、至少有两边相等 C、任意两边之和一定大于第三边 D、最多有两边相等2.已知ABC中,A=200,B=C,那么三角形ABC是( )A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形3

8、.六边形共有_条对角线,内角和等于_,每一个内角等于_。4.内角和是1620的多边形的边数是 _。考点21.如图所示,若ABCDEF,BC=FE,AB=ED,则图中B的对应角是( )CBA、C B、FEFDAC、E D、D2如图,AB=AD,DC=BC,试说明ABCADC。(6分)考点31.等腰三角形两边长分别为3,7,则它的周长为( )A、13 B、17 C、13或17 D、不能确定2.已知等腰三角形的一个外角是120,则它是( )A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形3.一个等腰三角形的两条边长分别为8和3,那么它的周长为 考点41.下面说法正确的是个

9、数有()如果三角形三个内角的比是,那么这个三角形是直角三角形;如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;如果A=B=C,那么ABC是直角三角形;若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;在ABC中,若AB=C,则此三角形是直角三角形。A、3个 B、4个 C、5个 D、5个中考训练1(3分)(2012衡阳)下列图形中,既是轴对称图形又是中心对称图形的是()A等边三角形B平行四边形C正方形D等腰梯形2(6分)(2012衡阳)如图,AF=DC,BCEF,请只补充一个条件

10、,使得ABCDEF,并说明理由3(3分)(2013衡阳)如图,AB平行CD,如果B=20,那么C为()A40B20C60D704(3分)(2013衡阳)如图,1=100,C=70,则A的大小是()A10B20C30D805(3分)(2014衡阳)若一个多边形的内角和是,则这个多边形的边数为()A B C D提升训练例1.用正三角形、正方形和正六边形能否进行镶嵌? 例2.如图,在ABC中,ACB=60,BAC=75,ADBC于D,BEAC于E,AD与BE交于H,则CHD= 例3如图,AP平分BAC交BC于点P,ABC=90,且PB=3cm,AC=8cm,则APC的面积是 cm2例4. 两个全等的含30,60角的三角板ADE和ABC如图所示放置E,A,C三点在一条直线上,连接BD,取BD的中点M,连结ME,MC。试判断EMC是什么样的三角形,并说明理由。ABCDFGE123456例5.如图,ABC中,12,34,56A60求ECF、FEC的度数-

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁