“半角”模型旋转变换几何练习.docx

上传人:飞****2 文档编号:27086148 上传时间:2022-07-22 格式:DOCX 页数:17 大小:1.07MB
返回 下载 相关 举报
“半角”模型旋转变换几何练习.docx_第1页
第1页 / 共17页
“半角”模型旋转变换几何练习.docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《“半角”模型旋转变换几何练习.docx》由会员分享,可在线阅读,更多相关《“半角”模型旋转变换几何练习.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、精选优质文档-倾情为你奉上考点五:角含半角、等腰三角形的(绕顶点)旋转重合法核心母题 如图,在正方形ABCD中,E、F分别是BC、CD边上的点,EAF=45,求证:EF=BE+DF. 变式一:如图,E、F分别是边长为 1的正方形ABCD的边BC、CD上的点,若ECF的周长是2,求EAF的度数? 变式二:如图,在正方形ABCD中,E、F分别是BC、CD边上的点,EAF=45,AGEF,求证:AG=AB. 综合:在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:.MAN=.AM、AN分别平分BMN和DNM. 练习 1、 如图,在四边形ABCD中,AB=BC,A=

2、C=90,B=135,K、N分别是AB、BC上的点,若BKN的周长是AB的2倍,求KDN的度数? 2、 已知:正方形ABCD中,MAN=45,MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N当MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN(1)当MAN绕点A旋转到BMDN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想3、如图,在四边形ABCD中,AB=AD,B+D=180,E、F分别是边BC、CD上的点,且2EAF=

3、BAD,(1) 求证:EF=BE+FD(2) 如果E、F分别是边BC、CD延长线上的点,其他条件不变,结论是否仍然成立?说明理由。 5、如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,ABC+AED=180求证:AD平分CDE. 6、 如图,已知AB=CD=AE=BC+DE=2,ABC=AED=90,求五边形ABCDE的面积 7、 如图1在四边形ABCD中AB=AD,B+D=180,E、F分别是边BC、CD上的点,且BAD=2EAF(1)求证:EF=BE+DF;(2)在(1)问中,若将AEF绕点A逆时针旋转,当点E、F分别运动到BC、CD延长线上时,如图2所示,试探究EF、BE、

4、DF之间的数量关系 8、 如图,在ABC中,ACB=90,AC=BC,P是ABC内一点,且PA=3,PC=2,PB=1求BPC的度数 半角模型条件:思路:(1)、延长其中一个补角的线段(延长CD到E,使ED=BM ,连AE或延长CB到F,使FB=DN ,连AF ) 结论:MN=BM+DN AM、AN分别平分BMN和DNM(2) 对称(翻折) 思路:分别将ABM和ADN以AM和AN 为对称轴翻折,但一定要证明 M、P、N三点共线.(B+D=且AB=AD)例题应用:例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM +DN,求证:.MAN= . .AM、AN分别平分BMN和DNM. 思路同上略. 例1拓展:在正方形ABCD中,已知MAN=,若M、N分别在边CB、DC的延长线上移动, .试探究线段MN、BM 、DN之间的数量关系. .求证:AB=AH. 提示如图: 例2.在四边形ABCD中,B+D=,AB=AD,若E、F分别在边BC、CD上,且满足EF=BE +DF.求证: 提示:练习巩固:如图,在四边形ABCD中,B=D=,AB=AD,若E、F分别在边BC、CD 上的点,且. 求证:EF=BE +DF. 提示: 专心-专注-专业

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁