资源描述
#+
第一单元
图 形 的 变 换
(一)单元教学目标
1. 使学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上画出一个图形的轴对称图形。
2. 进一步认识图形的旋转,探索图形旋转的特征和性质,能在方格纸上把简单图形旋转90。
3. 初步学会运用对称、平移和旋转的方法在方格纸上设计图案,进一步增强空间观念。
4. 让学生在上述活动中,欣赏图形变换所创造出的美,进一步感受对称、平移和旋转在生活中的应用,体会数学的价值。
(二)单元教学重难点
1.重点:
(1)探索图形成轴对称的性质和特征。
(2)探索图形旋转的特性和性质。
2.难点:
(1)能在方格纸上画出一个图形的轴对称图形。
(2)能在方格纸上把简单图形旋转90度。
第一单元 图形的变换
第一课时
课题:轴对称
教学内容:
教材第3~4页例1和例2。
教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,使学生正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
3.培养和发展学生的实验操作能力,发现美和创造美的能力。
重点难点:会利用轴对称的知识画对称图形。
教学设计:
一、出示课题, 教学目标:
1.通过画、剪、观察、想象、分类、找对称轴等系列活动,正确认识轴对称图形的意义及特征;
2.掌握已学过的平面图形的轴对称情况,能正确地找出其对称轴
二、出示自学指导
认真看课本
(1)欣赏图形,并找出各个图形的对称轴。
(2)你们还见过哪些轴对称图形?
(3)轴对称图形的概念:
(4)探究轴对称图形的性质:
三、学生看书,自学。
四、效果检测
判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。
五、练习:
1、课内练习一 -----第1、2题。
2、课外作业:
板书设计:
轴 对 称
如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。
教学反思:
第二课时
课题:旋 转
教学内容:
教材第5~5页例3和例题4。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学设计:
一、 出示课题,教学目标
1、通过生活事例,初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。
2、通过动手操作,会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
二、出示自学指导
认真看课本例题3:例题4:
先说一说画图的步骤,再来画图。
三、学生看书,自学
四、效果检测
1.课内练习:
2.第6页2题。
3.第9页4题、
课后作业:
板书设计:
旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学反思:
第三课时
课题: 欣 赏 设 计
教学内容:
教材第7~11页。
教学目标:
1.通过欣赏与设计图案,使学生进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
3.学生感受图形的美,进而培养学生的空间想象能力和审美意识。
重点难点:
1.能利用对称、平移、旋转等方法绘制精美的图案。
2.感受图形的内在美,培养学生的审美情趣。
教学设计
一、 出示课题,教学目标
1.通过欣赏与设计图案,进一步熟悉已学过的对称、平移、旋转等现象。
2.欣赏美丽的对称图形,并能自己设计图案。
二、出示自学指导
认真看课本
说一说:
1、上面每幅图的图案是由哪个图形平移或旋转得到的?
2.上面哪幅图是对称的?先让学生边观察讨论,再进行交流。
三、学生看书,自学
四、效果检测
(一)反馈练习:
完成第8页3题。
1、这个图案我们应该怎样画?
2、仔细观察这几个图案是由哪个图形经过什么变换得到的?
(二)拓展练习:
1、分别利用对称、平移和旋转创作一个图案。
2、 交流并欣赏。说一说好在哪里?
五、全课总结
对称、平移和旋转知识广泛地应用于平面、立体的建筑艺术和几何图像上,而且还涉及到其它领域,希望同学们平时注意观察,都成为杰出的设计师。
六、布置作业:
教材第9页第5题。
板书设计:
欣赏和设计
图案1 图案2
图案3 图案4
对称、平移和旋转知识有广泛的应用。
教学反思:
第四课时
课题:欣赏与设计练习课
教学内容:
教材第8~11页。
教学目标:
1.通过收集图案,小组交流,感受图案的美,并为自己以后创作图案提供借鉴。
2.通过欣赏图案,发展学生的审美意识和空间观念。
3.自己经历创作实践的整个过程,感受创作的乐趣,进一步培养学生的审美情趣。
重点难点:
1.进一步利用对称、平移、旋转等方法绘制精美的图案。
2.加深感受图形的内在美,培养学生的审美情趣。
教学设计:
一、展览导入
课前让学生收集图案,以小组为单位进行交流。
思考:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合思考说一说它的特点。
二、学习新课
(一)尝试创造:
让学生做第8页第1、2题。
1、鼓励学生用学过的图形设计图案,对不同的学生提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予表扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、 提出三个步骤:
(1)先选择一个喜欢的图形;
(2)再确定你选用的对称、平移和旋转的方法;
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、巩固练习
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2.作品展示。
3、独立观察并尝试做第9页第5题。
四、全课总结
全班交流各自的作品,选出好的作品互相评价,全班展览。
板书设计:
欣赏和设计练习课
图片1 图片2
教学反思:
第二单元 因数和倍数
第一课时
课题:因数和倍数
教学目标:
1、学生掌握找一个数的因数,倍数的方法;
2、学生能了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
4、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学设计:
一、出示课题,学习目标
1、掌握找一个数的因数,倍数的方法;
2、了解一个数的因数是有限的,倍数是无限的;
3、能熟练地找一个数的因数和倍数;
二、出示自学指导
认真看课本主题图,找出12的其他因数
任何一个数的因数,最小的一定是( ),而最大的一定是( )。
完成做一做1、2小题:找3和5的倍数。
(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)
三、学生看书,自学
四、效果检测
我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?
五、独立作业:
完成练习二1~4题
板书设计:
因数和倍数
一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数
教学反思:
第二课时
课题:2、5的倍数的特征
教学目标:
1、掌握 2 、5 倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
4、培养学生的概括能力。
重点和难点:
1、是2 、5 倍数的数的特征。
2、奇数和偶数的概念。
教学设计:
一、出示课题,学习目标
1、掌握 2 、 5 倍数的特征
2、理解并掌握奇数和偶数的概念。
3、能运用这些特征进行判断。
二、出示自学指导
认真看课本观察
(一)2 的倍数的特征。
(二)5 的倍数的特征。
三、学生看书,自学
四、效果检测
(一)谁能说一说是2的倍数的数的特征?
板书:个位上是 0,2,4,6,8的数,都是2的倍数。
介绍:奇数和偶数的定义
说明:在本题所列的有限个数里,奇数、偶数都是有限的,但是自然数是无限的,奇数、偶数也是无限的,所以集合圈里要写上省略号。
(二)说一说5的倍数的特征?
板书:个位上是0或者5的数,都是5的倍数。
五、巩固反馈:
1 、在1~100的自然数中,2的倍数有( )个,5的倍数数有( )个。
2 、比75小,比50大的奇数有( )。
3 、个位是( )的数同时是2和5的倍数。
4 、用 0 , 7 , 4 , 5 , 9 五个数字组成 2的倍数;5的倍数;同时是 2 和 5 的倍数的数。
六、全课总结:这节课你学会了什么?有什么收获?
板书设计:
2 、5 倍数的特征
个位上是 0,2,4,6,8的数,都是2的倍数。
个位上是0或者5的数,都是5的倍数。
教学反思:
第三课时
课题:3的倍数的特征
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自己的语言总结特征。
2、在探索活动中,感受数学的奥妙;在运用规律中,体验数学的价值。
教学重、难点:
是3的倍数的数的特征。
教学设计:
一、提出课题,寻找3的倍数特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜测一下?
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,学生人手一张。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
二、自主探索,总结3的倍数特征
师:先请在下表中找出3的倍数,并做上记号。
(教师出示百以内数表,学生利用p18的表。在学生的活动后,教师组织学生进行交流,并呈现学生已圈出3的倍数的百以内的数表。)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
学生同桌交流后,再组织全班交流。
学生先自己写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
板书设计:
3的倍数特征
3的倍数什么特征
教学反思:
第四课时
课题:质数和合数
教学目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
教学重点:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:
区分奇数、质数、偶数、合数。
教学设计:
一、出示课题,学习目标
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
二、出示自学指导
认真看课本
探究究竟什么样的数叫质数,什么样的数叫合数
三、学生看书,自学
四、效果检测
1、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。
2、那你们认为“1”是什么数?
让学生独立思考,后展开讨论。
3、动手操作,制质数表。
五、练习巩固:
完成练习四第1、2题。
六、课题小结:
这节课你在激烈的讨论中有什么收获?
板书设计:
质数和合数
只有1和它本身两个因数的数是质数
有三个或以上因数的数是合数
1既不是质数也不是合数
教学反思:
第三单元 长方体和正方体
长方体和正方体的认识
教学目标:
1.掌握长方体和正方体的特征,认识它们之间的关系。
2.培养学生动手操作、观察、抽象概括的能力和初步的空间观念。
3.渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重、难点:
1.长方体和正方体的特征。
2.立体图形的识图。
教学设计:
一、出示课题,学习目标
掌握长方体和正方体的特征,认识它们之间的关系
二、出示自学指导
认真看课本认识长方体的特征和正方体的特征
三、学生看书,自学
四、效果检测
(一)长方体的特征。
①长方体有几个面?面的位置和大小有什么关系?
②长方体有多少条棱?棱的位置、长短有什么关系?
③长方体有多少个顶点?
小组讨论,然后完成p28的表格。
请完整地说一说长方体的特征。
明确:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
(二)正方体特征。
对照长方体的特征学生自己研究正方体的特征。
学生讨论、归纳后,教师板书:正方体
面:6个完全相同的正方形。
棱:12条棱长度都相等。
顶:8个。
讨论比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教师提问:看一看长方体的特征正方体是否都有?试说一说长方体和正方体的关系。
(正方体是特殊的长方体)
五、巩固反馈:
1、量一量自己手中的长方体的长、宽、高,说出每个面的长和宽是多少?
2、判断.正确的在括号里画√,错误的画。
(1)长方体的六个面一定是长方形。 ( )
(2)正方体的六个面面积一定相等。 ( )
(3)一个长方体(非正方体)最多有四个面面积相等。( )
(4)相交于一个顶点的三条棱相等的长方体一定是正方体。( )
五、课堂总结:
谁来说一说长方体和正方体的特征和它们之间的关系?
六、课后作业:
1、拿一个火柴盒,量一量它的长、宽、高各是多少?然后说一说每个面的长和宽各是多少?
2、完成p29的“做一做”。
板书设计:
长方体和正方体的认识
比较长方体和正方体的特征。
相同点:面、棱、顶点的数量上都相同;
不同点:在面的形状、面积、棱的长度方面不相同。
教学反思:
第二课时:
教学内容:
求长方体正方体棱长和及相应练习
教学目标:
复习长方体和正方体的特征研究棱长和的计算。
教学重点:
1、长正方体的特征。
2、棱长和计算方法。
教学难点:
棱长和计算方法。
教学设计:
一、出示课题,学习目标
复习长方体和正方体的特征研究棱长和的计算
二、计算:
1、小卖部要做一个长2.2米,宽40厘米,高80厘米的玻璃柜台,先要在柜台各边都安上角铁,这个柜台需要多少米角铁?
独立思考,列式计算,小组交流方法。
汇报:你是怎样想的?
长方体12条棱,分成3组,4个长、4个宽、4条高。
40厘米=0.4米 80厘米=0.8米
2.24+0.44+0.84还可以(2.2+0.4+0.8)4
问:根据是什么?
2、为迎接五一国际劳动节,工人叔叔要在工人俱乐部的四周装上彩灯(地面的四边不装)。已知工人俱乐部的长90厘米,宽55厘米,高20厘米,工人叔叔至少需要多长的彩灯线?
问:地面的四边不装,是指哪四条边不装?计算至少需要多长的彩灯线,是求几条边的长度和?
独立计算
练一练:
1一个长方体的长是8厘米,宽是16厘米,高是5厘米。它的棱长和是多少厘米?
2、一个正方体的棱长和是48厘米,这个正方体的棱长是多少厘米?
三、巩固练习:
1一个长方体的所有棱长和72厘米,已知长是8厘米,宽是6厘米。高是多少厘米?
2学雷锋小组为班里做一个节约箱,箱长5分米,宽长4分米,高长3分米。想一想应该怎样做?至少需要多大的纸板?
四、作业:
探究 练习
长方体和正方体的表面积
长方体的表面积
教学内容:
P33-37
教学目的:
1、使学生理解长方体表面积的意义 , 掌握长方体表面积的计算方法, 能够正确地进行计算 , 并能运用所学知识解决一些实际问题 。
2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。
3. 培养学生的动手操作能力和共同研究问题的习惯。
4. 通过亲身参与探索实践活动 , 去获得积极的成功的情感体验。
5. 体验数学问题的探索性、感受数学思考过程的合理性 , 并从中体验数学活动充满着探索与创造。
教学重点: 长方体表面积计算的基本思路和方法。
教学难点: 根据长方体的长、宽、高 , 确定每个面的长、宽是多少。
教学设计:
一、出示课题,学习目标
1、使学生理解长方体表面积的意义 , 掌握长方体表面积的计算方法, 能够正确地进行计算 , 并能运用所学知识解决一些实际问题 。
二、自主探索
分组操作, 探索长方体的表面积的含义、并建立它们的联系。
同学们, 现在请大家利用桌面上的长方体、剪刀 ,看看把一个长方体或正方体的纸盒展开是什么形状的呢?
请在展开图中,分别用上下前后左右标明6个面。
观察长方体展开图,哪些面的面积相等?每个面的长和宽与长方体的长、宽、高有什么关系?
学生分小组合作操作。
三、各小组学生交流汇报结果。
板书 :( 长宽 + 长高 + 宽高 ) 2 。
板书: (长2+宽2) 底面周长高+长宽2
长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。
四、实践运用
1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?
说明 " 至少 " 的意思。
独立计算,说说你是怎么计算的?
2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。
3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?
想一想怎样计算正方体的表面积呢?
五、评价体验 今天你运用了什么学习方法 ? 学习上有什么收获 ? 你感受最深是什么 ? 学生之间互相评价。
六、、作业:
1、看书
2、实际测量
长方体是一种很常见的物体, 在我们的周围随时都可以看到长方体, 同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。
板书设计:
长方体的表面积
长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积= ( 长宽 + 长高 + 宽高 ) 2
课后反思:
第二课时:练习
教学内容:
练习六
教学目标:
复习长正方体表面积计算,应用这些知识解决生活问题。
教学重点:
表面积的计算。
教学难点:
表面积知识在实际中的应用。
教学设计:
一、复习检查:
1、长正方体的特征是什么?
2、什么是长正方体的表面积?怎样计算表面积?
二、基本练习:
1、正方体的棱长是8分米,这个正方体的棱长之和是( )分米,表面积是( )。
2、一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是( )分米,表面积是( )平方分米。
3、一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。做10个这样的包装箱,需要纸板多少平方厘米?合多少平方分米?
4、有一个长方体的铁罩,长6分米,宽4.5分米,高4分米。做一个这样的铁罩至少需要多少平方分米?
三、解决实际问题:(注意审题和方法的多样性)
1、一座办公楼的门厅有4跟同样的长方体的水泥柱,长和宽都是4分米,柱高4米。在每根柱子的四壁刷上油漆,刷油漆的面积一共有多少平方分米?(计算出四个面的总面积)
2、一个长方体的大衣柜,长0.9米,宽0.5米,高1.8米,在它的正面和左右两面刷油漆,刷油漆的面积至少是多少平方米?(三个面的面积)
3、一个长方体罐头盒,长12厘米,宽8厘米,高6厘米。在它的四周贴上商标纸,这张商标纸的面积至少有多少平方厘米?
4、一个游泳池,长50米,宽40米,平均深1.5米.在池底和四壁抹上一层水泥, 抹水泥的面积至少是多少平方米?如果每平方米用水泥4.5千克,共需要水泥多少千克?(先求五个面的面积和,再求水泥的重量。)
5、装修一间居室,长和宽都是3.6米,高是2.5米,门窗面积10平方米。在居室四壁和顶棚都贴壁布,至少需要多少平方米?(居室是什么形状?求几个面的总面积?)
四、通过今天的练习,你有收获吗?
长方体和正方体体积
体积和体积单位
教学目标:
1、使学生理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、使学生知道计量一个物体的体积有多大,要看它包含多少个体积单位。
教学重点:
1、建立体积概念。
2、认识体积单位。
教学难点:
建立体积概念。
教学设计:
一、出示课题,学习目标
1、理解体积的意义,认识常用的体积单位:立方米、立方分米、立方厘米,培养初步的空间观念。
2、知道计量一个物体的体积有多大,要看它包含多少个体积单位。
二、出示自学指导
认真看课本总结
1、 体积的意义。
/2、体积单位:
三、学生看书,自学
四、效果检测
学生概括:物体所占空间的大小叫做物体的体积。(板书)
常用的体积单位有:立方米、立方分米、立方厘米。
练一练:选择恰当的单位:
(1)、橡皮的体积用( ),火车的体积用( ),书包的体积用( )。(2)、练习:
①说一说:测量篮球场的大小用( )单位。
测量学校旗杆的高度用( )单位
测量一只木箱的体积要用( )单位。
②、 一个正方体的棱长是1( ),表面积是( ),体积是( )。(你想怎样填?)
③、判断:一只长方体纸箱,表面积是52平方分米,体积是24立方分米,它的表面积大。( )
五、总结:
这节课我们学习了体积的意义和体积单位。你有什么收获?
板书设计:
体积和体积单位
物体所占空间的大小叫做物体的体积。
常用的体积单位有:立方米、立方分米、立方厘米。
课后反思:
长方体、正方体的体积计算方法
教学内容:
推导长正方体的体积计算方法
教学目标:
1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
教学重点:
长正方体体积公式的推导。
教学难点:运用公式计算。
教学设计:
一、出示课题,学习目标
理解长方体和正方体体积公式的推导,能运用公式进行计算。
二、出示自学指导
认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?
三、学生看书,自学
四、效果检测
如何计算长方体的体积?
板书:长方体体积=长宽高
字母公式:V=abh
五、练习
1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?
根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?
正方体体积=棱长棱长棱长 V=aaa=a3 读作a的立方
3、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?
请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?
长方体体积=长宽高 提问:长方体的长、宽、高不同,体积相同这是为什么?
六、小结:
怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。
七、作业:
课后反思:
练 习
教学内容:
练习
教学目标:
1、在理解了长正方体体积公式,能运用公式进行计算的基础上,进一步研究求长正方体体积的其它计算公式。
2、进一步培养学生空间观念和空间想象能力。
教学重点:
1、计算长正方体体积的其它公式。
2、逆向思维的题可以用方程方
教学难点:
几何知识与一般应用题的综合题。
教学设计:
一、 复习:
1.如何计算长正方体的体积?及字母公式
长方体的体积=长宽高 正方体体积=棱长棱长棱长
二、新授:
长方体或正方体底面的面积叫做底面积 。
长方体和正方体的底面积怎样求呢?
长方体的体积=长宽高 正方体体积=棱长棱长棱长
底面积 底面积
所以长正方体的体积也可以这样来计算: 长正方体的体积=底面积高
V =sh
三、 巩固练习:
1、长方体的底面积是24平方厘米,高是5厘米。它的体积是多少?
V=sh 245=120(立方厘米)
2、一根长方体木料,长5厘米,横截面的面积是0.06平方厘米。这根木料的体积是多少?
理解横截面积的含义,体会长方体不同放置,说法各不相同。
出示另一种计算方法:长方体体积=横截面积长
3、家具厂订购500根方木,每根方木横截面的面积是24平方分米,长3米。这根木料一共是多少平方米?
理解面积单位和长度单位要一致。但不可能相同。
4、练一练
(1)、一块长方体的木板,体积是90立方分米。这块木板的长是60分米,宽是3分米。这块木板的厚度是多少分米?(2)、一根长方体水泥柱,体积是1立方米,高是4米,它的底面积是多少? (选择方法解答)
1、学校要修长50米,宽42米,的长方形操场。先铺10厘米的三合土,再铺5厘米的煤渣。需要三合土和煤渣各多少立方米?
2、有一块棱长是10厘米的正方体钢坯,锻造成宽和高都是5厘米的长方体钢材,求长方体钢材的长。
3、用15根规格完全相同的木板堆成一个体积是3.6立方米的长方体。已知每根木板宽0.3米,厚0.2米,求每根木板的长。
四、小结:今天,我们又学了哪些知识?你有什么收获?
五、作业:
体积单位的进率
教学内容:
体积单位的进率
教学目标:
在认识体积单位,知道体积单位与长度单位的联系和区别基础上,学习掌握体积单位间的进率与化、聚方法。学习计算重量的解答方法。
教学难点:体积单位的进率。计算物体的重量。
教学难点:体积单位的进率的化聚。
教学设计:
一、复习检查:
1、计算体积用 单位,常用的体积单位有哪些?
2、填空:
1厘米 1平方厘米 1立方厘米
单位 单位 单位
说一说:计算长度用 单位,计算面积用 单位,计算体积用 单位。
1米=( )分米, 1平方米=( )平方分米
1分米=( )厘米 1 平方分米=( )平方厘米
二、新课:
1、体积单位之间的进率:
(1)棱长是1分米的正方体,体积是111=1立方分米。想一想它的体积是多少立方厘米?
棱长改用厘米作单位:体积是101010=1000立方厘米
底面积是1平方分米,也就是100平方厘米,利用体积的计算公式10010=1000平方厘米
通过刚才的计算你能告诉大家什么?1立方分米=1000立方厘米
(2)根据上面的方法,你能推算出1平方米等于多少平方分米吗?
棱长是1分米的正方体,体积是111=1立方分米
棱长改用厘米作单位:体积是101010=1000立方厘米
1立方米=1000立方分米(板书)
(3)小结: 相邻的体积单位之间的进率是(1000)。
(4)练习:
5立方米=( )立方分米
1.5立方米=( )立方分米
2400立方分米=( )立方米
12500立方厘米=( )立方分米
3.6立方分米=( )立方厘米
填表
503040= (立方厘米) (立方分米) (立方米)
3、一块长方体的钢板,长2.5米,长1.6米,厚0.02米。它的体积是多少立方分米?每立方分米的钢重7.8千克。这块钢重多少千克?
钢板的体积:2.51.60.02=0.08(立方米) 0.08立方米=80立方分米
钢板的质量(比重体积=质量): 7.880=624(千克)
答:这块钢板的体积是80立方分米,质量是624千克。
求物体的质量公式为:比重体积=质量 注意前后单位是否统一。
三、巩固练习:
1、一块正方体的钢板,棱长是20厘米,每立方分米的钢重8.9千克。这块钢重多少千克?
20厘米=2分米 222=8(立方分米)8.98=71.2(千克)
2、一根长方体钢材,长4.8米,横截面是一个边长5厘米的正方形。每立方分米钢重7.8千克,这根钢材重多少千克?
3、一块长方体铁板重468千克,又知铁板长2米,宽1.5米,厚2厘米。每立方分米的铁板重多少千克?(列方程解答)
四、作业:
容积
教学内容:容积教学目标:1、知道容积的意义。
2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。
3、会计算物体的容积。
教学重点:
1、容积的概念。
2、容积与体积的关系。
教学难点:
容积与体积的关系。
教具:量筒和量杯、不同的饮料瓶 、纸杯
教学设计:
一、复习检查:
说出长正方体体积计算公式。
二、准备:
把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。
三、新授:
1、认识容积及容积单位:
(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。
通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。
(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。
(3)演示:体积单位与容积单位的关系。
说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。
①1升(L)=1000毫升(mL)
将1升 的水倒入1立方分米的容器里。
小结:1升(L)=1立方分米(dm3 )
②1升 = 1立方分米
1000毫升 1000立方厘米
1毫升(mL)=1立方厘米( cm3 )
练一练:
1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L
1.5dm3 =( )L
(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?
(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。
2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。
例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?
542 =40(立方分米) 40立方分米=40升
答:这个油箱可以装汽油40升。
做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)
小结:计算容积的步骤是什么?
3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?
出示一个西红柿,谁有办法计算它的体积?小组设计方案:
四、巩固练习:
1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?
2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?
3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?
4、提高题:p55、16
五、作业:
单元复习第一课时
复习目标:
1、使学生对长正方体的有关概念掌握得更加牢固。
2、进一步掌握长正方体的表面积和体积的计算。
3、体积单位的进率。
复习重点:
长正方体的表面积和体积的计算。体积单位的进率。
复习用具:长正方体的学具。
复习过程:
一、复习单元的主要内容:(板书:长方体和正方体)
问:看到课题你能想到到哪些知识?
1、特征及关系:
正方体是特殊的长方体。(集合图)
2、表面积:怎样
展开阅读全文
相关搜索