数学建模期末复习.doc

上传人:e****s 文档编号:27056272 上传时间:2022-07-21 格式:DOC 页数:22 大小:446KB
返回 下载 相关 举报
数学建模期末复习.doc_第1页
第1页 / 共22页
数学建模期末复习.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《数学建模期末复习.doc》由会员分享,可在线阅读,更多相关《数学建模期末复习.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一、 线性规划1求解下列线性规划问题: 共20分 max z=2x1+7x2-3 x3x1+3x2+4x330 (第一种资源限制约束) x1+4x2- x310 (第二种资源限制约束) x1、x2、x30(1) 求出该问题的最优解和最优值;(2) 第二种资源限量由10变为20,最优解是否改变;若改变请求出新的最优解;(3) 增加一个新变量x6,其目标函数系数为3,技术消耗系数为,最优解是否改变;若改变请求出新的最优解。解:(1)lingo 程序 max =2*x1+7*x2-3*x3;x1+3*x2+4*x3=30;x1+4*x2-x3=10;最优解(x1 x2 x3)=(10 0 0)最优值

2、=20(2) max =2*x1+7*x2-3*x3;x1+3*x2+4*x3=30;x1+4*x2-x3=20;最优解(x1 x2 x3)=(20 0 0)最优值=40或对第一题进行灵敏度分析(第二种资源限量可以在0到30范围内变化,最优基解不变最优解(x1 x2 x3)=(20 0 0)最优值=40)(3)max =2*x1+7*x2-3*x3+3*x4;x1+3*x2+4*x3+x4=30;x1+4*x2-x3+2*x4=10;求解得到 最优解(x1 x2 x3 x4)=(10 0 0 0)最优值=202某校基金会有一笔数额为5000万元的基金,打算将其存入银行。当前银行存款的利率见下表

3、2。取款政策与银行的现行政策相同,定期存款不提前取,活期存款可任意支取。校基金会计划在5年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在5年末仍保留原基金数额。校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。请你帮助校基金会设计一个基金最佳使用方案,试建立其模型。(15分) 表2银行存款税后年利率(%)活期半年期一年期二年期 三年期五年期3、某公司打算在三个不同的地区设置4个销售点,根据市场预测部门估计,在不同的地区设置不同的数量的销售点,每月可得到的利润如表2所示。试问在各个地区应如何设置销售点,才能使每月获得的总利润最大?其最大利润是多少?并给出最优方案。(15分)表

4、2销售点利润地区 01234101625303220121721223010141617解:变量 为0,1变量 xij0,(i=1,2, 3;j=1,2,3,4,5) 目标函数:Max 约束条件: Cij=0 16 25 30 32 0 12 17 21 22 0 10 14 16 17程序: model:sets: s/1.3/; d/1.5/; link(s,d):c,x; Endsets max=sum(link:c*x); !min=sum(s(i):sum(d(j):c(i,j)*x(i,j); ! 同上面相同的目标函数 ;for(s(i):sum(d(j):x(i,j)=1); s

5、um(s(i):sum(d(j):(j-1)*x(i,j)=4; data: c=0 16 25 30 320 12 17 21 22 0 10 14 16 17;Enddata 结果:Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost答:地区1设2个销售点,地区2、3个设1个销售点,最大利润为474一个木材储运公司有很大的仓库用以储运出售木材。由于木材季度价格的变化,该公司于每季度初购进木材,一部分于本季度内出售,一部分储存起来以后出售。已知该公司仓库的最大储存量为20万米

6、3,储存费用为(70+100u)千元/万米3,u为存储时间(季度数)。已知每季度的买进卖出价及预计的销售量如表1所示。表1季度买进价(万元/万米3)卖出价(万元/万米3)预计销售量(万米3)冬410425100春430440140夏460465200秋450455160由于木材不宜久贮,所有库存木材应于每年秋末售完。为使售后利润最大,试建立这个问题的线性规划模型。(15分)解:xij:第i季度买进,第j季度卖出,(i=j)目标函数:Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465

7、-460)+x14*(455-410)+x24*(455-430)+x34*(455-460)+x44*(455-450)-x12*(70+100*1)*0约束条件:X11=100X12+x22=140X13+x23+x33=200X14+x24+x34+x44=160X12+x13+x14=20X13+x14+x23+x24=20X14+x24+x34=20模型:Max=x11*(425-410)+x12*(440-410)+x22*(440-430)+x13*(465-410)+x23*(465-430)+x33*(465-460)+x14*(455-410)+x24*(455-430)+

8、x34*(455-460)+x44*(455-450)-x12*(70+100*1)*0.1-x13*(70+100*2)*0.1-x14*(70+100*3)*0.1-x23*(70+100*1)*0.1-x24*(70+100*2)*0.1-x34*(70+100*1)*0.1;X11=100;X12+x22=140;X13+x23+x33=200;X14+x24+x34+x44=160;X12+x13+x14=20;X13+x14+x23+x24=20;X14+x24+x34=20;结果:Global optimal solution found. Total solver iterat

9、ions: 0 Variable Value Reduced Cost Row Slack or Surplus Dual Price 答:最大利润为:5160,季度冬买进120,本季度卖出100,等到季度夏卖出20季度春买进140,本季度卖出140季度秋买进180本季度卖出140季度秋买进160本季度卖出160二、 对偶分析1、求解下列线性规划问题: 共25分 max z=4x1+x2+2x38x1+3x2+x32 (第一种资源限制约束) 6x1+x2+x38 (第二种资源限制约束) x1、x2、x30(1) 求出该问题的最优解和最优值;(2) 第一种资源限量由2变为4,最优解是否改变,若改

10、变请求出新的最优解;(3) 现有新产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,问该产品的售价至少为多少时才值得生产?(4) 由于资源缺乏,现有第三种原来并不受约束资源现在受到限制,限制方程为:,问此时最优解是否受到影响,若需要改变,请求出新的最优解解:(1)最优解x1=x2=0,x3=2,最优值为4程序:max =4*x1+x2+2*x3;8*x1+3*x2+x3=2 ; 6*x1+x2+x3=8 ; 结果:Global optimal solution found. Total solver iterations: 2 Variable Value Reduced Cos

11、t Row Slack or Surplus Dual Price (2)法一:第一题进行灵敏度分析(第二种资源限量可以在0到8范围内变化,最优基解不变最优解(x1 x2 x3)= 0 0 4)最优值=8) Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X1 4.000000 12.00000 INFINITY X2 1.000000 5.000000 INFINITY

12、Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 法二:程序:max =4*x1+x2+2*x3;8*x1+3*x2+x3=4 ; 6*x1+x2+x3=8 ; 结果:Global optimal solution found. Total solver iterations: 2 Variable Value Reduced Cost Row Slack or Surplus Dual Price (3)程序:max=4*x1+x2+2*x3+x4;8*x1+3*x2+x3+2*x4=2;6

13、*x1+x2+x3+3*x44时生产,故售价至少大于4 Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X1 4.000000 12.00000 INFINITY X2 1.000000 5.000000 INFINITY X4 1.000000 3.000000 INFINITY Righthand Side Ranges Row Current Allowable Al

14、lowable RHS Increase Decrease(4)最优基解不变,最优解为(x1 x2 x3)= 0 0 2)最优值=4) 程序:max=4*x1+x2+2*x3;8*x1+3*x2+x3=2;6*x1+x2+x3=8;2*x1+3*x2+4*x3=10;结果:Global optimal solution found. Infeasibilities: 0.000000 Total solver iterations: 1 Variable Value Reduced Cost Row Slack or Surplus Dual Price 2 2. 某厂的二种产品I、II分别在

15、四种设备A1 、A2 、A3 、A4上加工。产品所需的机器台时、设备在计划内的有效台时、每件产品利润如下表所示:A1 A2 A3 A4利润I2 1 4 02 百元II2 2 0 43 百元有效台时12 8 16 12(1) 请制定一份最佳生产计划,使其总收入达到最大。试建立此问题的数学模型。(2)求解此问题。 (3)若把机器台时出租, 问应如何定价? (20)解:设生产1型x1 ,生产2型x2,目标函数:max z=2*x1+3*x2约束条件:2*x1+2*x2=12 X1+2*x2=84*x1=164*x2=12程序:max =2*x1+3*x2;2*x1+2*x2=12; x1+2*x2=

16、8;4*x1=16; 4*x2=12;解得:(x1 x2)=(4 2)最优值=14(2)三、 运输问题及整数规划 1某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表3所示:(共10分) 表3 项目投标者ABCD甲15182124乙19232218丙26171619丁19212317解:程序:model:sets: s/1.4/; d/1.4/; link(s,d):c,x; Endsets min=sum(link:c*x); !min=sum(s(i):sum

17、(d(j):c(i,j)*x(i,j); ! 同上面相同的目标函数 ;for(s(i):sum(d(j):x(i,j)=1); for(d(j):sum(s(i):x(i,j)=1); data: c=15 18 21 24 19 23 22 1826 17 16 1919 21 23 17;Enddata 结果:Global optimal solution found. Infeasibilities: Total solver iterations: 7 Variable Value Reduced Cost答:甲承包B 乙承包A 丙承包C 丁承包D 总费用:为702已知运输问题的调运和

18、运价表如下,求最优调运方案和最小总费用。(共10分)。(用qsb中的network modeling中的交通问题)销地产地B1B2B3产量A159215A231718A362817销量181216结果如下:程序:model:sets: s/1.3/:a; d/1.3/:b; link(s,d):c,x; Endsets min=sum(link:c*x); !min=sum(s(i):sum(d(j):c(i,j)*x(i,j); ! 同上面相同的目标函数 ;for(s(i):sum(d(j):x(i,j)=a(i); for(d(j):sum(s(i):x(i,j)=b(j); data:

19、a=15 18 17;b=18 12 16; c=5 9 23 1 76 2 8;Enddata end结果:Global optimal solution found. Total solver iterations: 6 Variable Value Reduced Cost 答:A1运15个单位到B3 A2运18个单位到B1 A3运16个单位到B2 A3运1个单位到B3总费用:1243、石油公司有三个石油贮存点,四个石油需求点。其容量和单位运价如表所示:需求点贮存d1d2d3d4贮存总容量A15456100A23366200A32578400需求点的需求量200100150250 制定一

20、个贮存点到需求点的运输计划,使总的运输费用最小。试建立此问题的数学模型并且求解。(10) 4. 许多非洲国家由于恶劣气候而使农业蒙受损害,联合国组织决定派5位农业专家去帮助5个非洲不发达国家,以提高他们的粮食供应。,每位专家能帮助不同国家提高粮食供应达到不同水平,提高的期望值如下表:专家国家 A B C D E 1 12 15 13 14 17 2 11 17 14 16 19 3 14 15 11 18 18 4 15 13 12 17 16 5 13 15 12 15 14 假定每个国家有同样的人口,试提出一个专家指派计划,使粮食供应的增长达到极大。试建立此问题的数学模型并且求解。(10)

21、5. 某汽车厂与一些单位签订了生产70辆汽车的合同,按合同规定明年每季度末分别提供10,15,25和20台汽车。该厂各季度的生产能力及生产每辆汽车的成本如表所示:季度交付辆数生产能力每辆成本(万元)1025108153511125301102010113 根据生产能力,该厂能提前完成合同,但因此要付出相应的贮存费。现规定每辆汽车积压一个季度需付0.15万元贮存费。试问该厂应怎样安排各季的生产计划,使总的生产费用最少?试建立此问题的数学模型并且求解。 (15)解:xij:第i季度生产 第j季度交的车辆目标函数:min=x11*10.8+x12*(+0.15)+x22*11.1+x13*(+0.3

22、)+x23*(0.15+)+x33*11+x14*(0.45+)+x24*(0.3+)+xX11=10X12+x22=15X13+x23+x33=25X14+x24+x34+x44=20X11+x12+x13+x14=25X22+x23+x24=35X33+x34=30X44=10程序:min=x11*10.8+x12*(10.8+0.15)+x22*11.1+x13*(10.8+0.3)+x23*(0.15+11.1)+x33*11+x14*(0.45+10.8)+x24*(0.3+11.1)+x34*(0.15+11)+x44*11.3;X11=10;X12+x22=15;X13+x23+

23、x33=25;X14+x24+x34+x44=20;X11+x12+x13+x14=25;X22+x23+x24=35;X33+x34=30;X44=1); data: c=3 6 710 5 6 38 2 8 4 16 8 6 5 9;Enddata end结果:Global optimal solution found. Total solver iterations: 8 Variable Value Reduced Cost答:A1服务B2 A2服务B23 A3服务B1 A4服务B4四、 目标规划1、设有一纺织厂可生产衣料和窗帘布共两种产品。该厂两班生产,每周的生产时间为80小时,无论

24、生产哪种产品,该厂每小时的产量都是1千米。据市场预测,每周窗帘布的销售量为70千米,而衣料的销售量为45千米。假定窗帘布和衣料的单位利润分别为千元/千米和千元/千米,上级主管部门对该厂提出了以下四个顺序目标:(1)尽可能避免开工不足;(2)尽可能限制每周加班时间不超过10小时;(3)尽可能满足市场需求;(4)尽可能减少加班时间。问该厂应如何安排生产才能使这些目标依序实现,试建立其数学模型。(15分)解: 约束条件:QSB-Goal programming一级目标:min=0,x1=45,x2=45,d1+=10,d3+=30二级目标:min=0,x1=45,x2=45,d1+=10,d3+=3

25、0三级目标:min=0,x1=45,x2=45,d1+=10,d3+=30四级目标:min=0,x1=45,x2=45,d1+=10,d3+=302、求解如下目标规划的满意解: 3某农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物。各种作物每亩需施肥料分别为0.12吨、0.2吨、0.15吨。预计秋后玉米每亩可收获500千克,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克。农场年初规划时依次考虑以下的几个方面:P1:年终收益不低于350万元;P2:总产量不低于1.25万吨;P3:小麦产量以0.5万吨为宜;P4:大豆产量

26、不少于0.2万吨;P5;玉米产量不超过0.6万吨;P6:农场现能提供5000吨化肥,若不够,可在市场高价购买,但希望高价采购量愈少愈好。试建立该目标规划问题的数学模型(不需要求解)。(16分五、 图与网络及关键路线六、 1已知四个城市间的距离如下表所示,求从A城市出发,经其余城市一次且仅一次,最后返回到A城市的最短路径与距离。(18分)ABCDA-112028B12-1825C239-10D34326-解:2某企业拟开发一新产品,该新产品投产前工序资料如下表(15分):工序ABCDEFGHIJKL工序紧前关系/AADC,EFB,GB,GHGI,J,K紧前关系工时(周)4103682328521

27、工时(周)试求:1、绘制网络图;2、计算时间参数;3、确定关键线路。2某石油公司其输油管网如下图所示,试求该网络中的最大流(15分)。.结果为:MODEL:sets:nodes/s,1,2,3,4,t/;arcs(nodes,nodes)/ s,1 s,2 1,2 1,3 2,4 3,2 3,t 4,3 4,t/:c,f;endsetsdata: c= 8 7 5 9 9 2 5 6 10;enddatamax = flow;for(nodes(i)|i #ne# 1 #and# i #ne# size(nodes): sum(arcs(i,j):f(i,j)-sum(arcs(j,i):f(

28、j,i)=0);sum(arcs(i,j)|i #eq# 1: f(i,j) = flow;for(arcs:bnd(0,f,c);END Global optimal solution found. Total solver iterations: 4 Variable Value Reduced Cost Row Slack or Surplus Dual Price 3、某公司一新产品投产前全部准备工作如下表所示,试绘制网络图、计算时间参数和确定关键路线(25分)。工作工作内容紧前工作工时(周)A市场调查/4B资金筹备/10C需求分析A3D产品设计A6E产品研制D8F制定成本计划C、E2

29、G制定生产计划F3H筹备 设备B、G2I筹备原材料B、G8J安装设备H5K调集人员G2L准备开工投产I、J、K1QSB-PERT-CPM关键路线:A D E F G I L 时间参数:最早/最晚开工,最早/最晚结束七、 建模题八、1,某工厂用原料A,B,C加工成三种不同牌号的产品甲、乙、丙。已知各种牌号产品中A,B,C含量,原料成本,各种原料的每月限制用量,三种牌号产品的单位加工费及售价如表所示: 甲乙丙原料成本(元/千克)每月限制用量(千克)A60%15%2000B2500C20%60%50%1200加工费(元/千克)售价问该厂每月应生产这三种牌号产品各多少千克,使该厂获利最大?试建立这个问

30、题的线性规划的数学模型(求解)。2,下表给出了A,B,C,D,E五种合金含铅,锌,锡的百分率。现要用这五种合金熔炼成一种含铅,锌,锡含量比例为3:2:5的新合金。求总费用最小的生产方案。建模型(8分),求解(7分)。合金ABCDE铅含量(%)3010501050锌含量(%)6020201010锡含量(%)1070308040单价(元/kg)3、有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量如表1所示。现有三种货物待运,已知有关数据列于表2。为了航运安全,要求前、中、后舱在实际载重量上大体保持各舱最大允许载重量的比例关系,具体要求前、后舱分别与中舱之间载重量比例上偏差不超过15%,前、后舱之间不超过10%。问该货轮应装载A,B,C各多少件,运费收入为最大?试建立这个问题的线性规划模型。(15分)表1前 舱中 舱后 舱最大允许载重量(吨)200030001500容积(立方米)400054001500表商品数量(件)每件体积(立方米/件)每件重量(吨/件)运价(元/件)A6001081000B100056700C80075600

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理手册

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁