《2020版导与练一轮复习文科数学习题:第九篇 统计与统计案例(必修3、选修1-2) 第2节 用样本估计总体 .doc》由会员分享,可在线阅读,更多相关《2020版导与练一轮复习文科数学习题:第九篇 统计与统计案例(必修3、选修1-2) 第2节 用样本估计总体 .doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第2节用样本估计总体【选题明细表】知识点、方法题号样本的数字特征1,4,8,10频率分布直方图3,5,6,9茎叶图、折线图2,7,11样本估计总体12,13基础巩固(时间:30分钟)1.(2018贵阳一模)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70,60,60,50,60,40,40,30,30,10,则这组数据的众数、中位数、平均数的和为(D)(A)170(B)165(C)160(D)150解析:数据70,60,60,50,60,40,40,30,30,10的众数是60,中位数是45,平均数是45,故众数、中位数、平均数
2、的和为150,故选D.2.如图是某市今年10月份某天6时至20时温度变化折线图,下列说法错误的是(D)(A)这天温度极差为8 (B)这天温度的中位数在9 附近(C)这天温度无明显变化的是早上6时至早上8时(D)这天温度变化率绝对值最大的是上午11时至中午13时解析:由折线图可得,最高气温为14 ,最低气温为6 ,所以这天温度极差为8 ,故排除A;从6时至20时温度从低到高依次排列,可得这天温度的中位数为9 附近,故排除B;由折线图可得,从6时至8时,温度没有明显变化,故排除C;由折线图可得,从13时至15时,温度变化率绝对值最大,故D是错误的.故选D.3.(2018开封三模)学校根据某班的期中
3、考试成绩绘制了频率分布直方图(如图所示),根据图中所给的数据可知a+b等于(C)(A)0.024(B)0.036(C)0.06(D)0.6解析:根据频率分布直方图得,(0.01+a+b+0.018+0.012)10=1,解得a+b=0.06.故选C.4.(2018江西二模)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则(A)(A)=4,s22(C)4,s24,s22解析:某7个数的平均数为4,方差为2,加入一个新数据4后,这8个数的平均数为=(74+4)=4,方差为s2=72+(4-4)2=2.故选A.5.(2018南安一中模拟)某商场在国庆黄金
4、周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为(C)(A)6万元 (B)8万元(C)10万元(D)12万元解析:设11时到12时的销售额为x万元,依题意有=,所以x=10,故选C.6.(2018龙岩模拟)党的十八大以来,脱贫攻坚取得显著成绩,2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所得年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为20,40),4
5、0,60),60,80),80,100,则年收入不超过6万的家庭大约为(A)(A)900户(B)600户(C)300户(D)150户解析:由频率分布直方图得:年收入不超过6万的家庭所占频率为(0.005+0.010)20=0.3,所以年收入不超过6万的家庭大约为0.33 000=900.故选A.7.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(7099分),若甲、乙两组学生的平均成绩一样,则a=;甲、乙两组学生的成绩相对整齐的是.解析:由题意可知=89,解得a=5.因为=(142+1+0+92+62)=,=(132+42+0+92+82)=,所以,故成绩相对整齐的是甲组.答案:5甲组能
6、力提升(时间:15分钟)8.(2018沙市区校级一模)已知四个正数x1,x2,x3,x4的标准差s=0.2,则数据2x1-1,2x2-1,2x3-1,2x4-1的方差为(D)(A)0.2(B)0.4(C)0.8(D)0.16解析:根据题意,设四个正数x1,x2,x3,x4的平均数为,则有=(x1+x2+x3+x4),又由其标准差s=0.2,则有其方差s2=(x1-)2+(x2-)2+(x3-)2+(x4-)2=0.04,对于数据2x1-1,2x2-1,2x3-1,2x4-1,其平均数为,则有=(2x1-1+2x2-1+2x3-1+2x4-1)=2-1,则其方差s2=(2x1-1-2+1)2+(
7、2x2-1-2+1)2+(2x3-1-2+1)2+(2x4-1-2+1)2=4s2=0.16,故选D.9.(2018济宁二模)2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是.解析:由频率分布直方图得:评估得分在60,70)的频率为0.01510=0.15,评估得分在70,80)的频率为0.04010=0.4,所以估计这100名职工评估得分的中位数是70+10=78.75.答案:78.7510.(2018北京模拟)在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中
8、一个数据的十位数字1未污损,即9,10,11,1,那么这组数据的方差s2可能的最大值是.解析:设这组数据的最后2个分别是10+x,y,则9+10+11+(10+x)+y=50,得x+y=10,故y=10-x,故s2=1+0+1+x2+(-x)2=+x2,显然x最大取9时,s2最大是.答案:11.如图茎叶图是甲、乙两人在5次综合测评中的成绩(为整数),其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是.解析:由图可知,甲的平均分为90.设被污损的数为x,乙的成绩分别是83,83,87,90+x,99,其中被污损的成绩为0到9中的某一个.由甲的平均成绩超过乙的平均成绩,得90.所以x8.又
9、x是0到9的十个整数中的其中一个,所以x8的概率为=.答案:12.(2018全国卷)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)频数151310165(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布
10、直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:(1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.20.1+10.1+2.60.1+20.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为=(0.051+0.153+0.252+0.354+0.459+0.5526+0.655)=0.48.该家庭使用了节水
11、龙头后50天日用水量的平均数为=(0.051+0.155+0.2513+0.3510+0.4516+0.555)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)365=47.45(m3).13.(2018新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)轮胎的宽度在194,196内,则称这个轮胎是标准轮胎,试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况
12、,判断这两个工厂哪个厂的轮胎相对更好?解:(1)甲厂这批轮胎宽度的平均值为:=(195+194+196+193+194+197+196+195+193+197)=195(cm),乙厂这批轮胎宽度的平均值为:=(195+196+193+192+195+194+195+192+195+193)=194(cm).(2)甲厂这批轮胎宽度在194,196内的数据为195,194,196,194,196,195,平均数为=(195+194+196+194+196+195)=195,方差为=(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2=,乙厂这批轮胎宽度在194,196内的数据为195,196,195,194,195,195.平均数为=(195+196+195+194+195+195)=195,方差为=(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2=.因为两厂标准轮胎宽度的平均数相等,但乙厂的方差更小.所以乙厂的轮胎相对更好.