2020版高考化学苏教版大一轮复习讲义:专题12 第37讲 原子结构与元素性质 .docx

上传人:荣*** 文档编号:2696026 上传时间:2020-04-29 格式:DOCX 页数:30 大小:1.67MB
返回 下载 相关 举报
2020版高考化学苏教版大一轮复习讲义:专题12 第37讲 原子结构与元素性质 .docx_第1页
第1页 / 共30页
2020版高考化学苏教版大一轮复习讲义:专题12 第37讲 原子结构与元素性质 .docx_第2页
第2页 / 共30页
点击查看更多>>
资源描述

《2020版高考化学苏教版大一轮复习讲义:专题12 第37讲 原子结构与元素性质 .docx》由会员分享,可在线阅读,更多相关《2020版高考化学苏教版大一轮复习讲义:专题12 第37讲 原子结构与元素性质 .docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第37讲微粒间作用力与物质的性质考纲要求1.理解离子键的形成,能根据离子化合物的结构特征解释其物理性质。2.了解晶体的类型,了解不同类型晶体中结构微粒、微粒间作用力的区别。3.了解晶格能的概念,了解晶格能对离子晶体性质的影响。4.了解分子晶体结构与性质的关系。5.了解原子晶体的特征,能描述金刚石、二氧化硅等原子晶体的结构与性质的关系。6.理解金属键的含义,能用金属键理论解释金属的一些物理性质。了解金属晶体常见的堆积方式。7.了解晶胞的概念,能根据晶胞确定晶体的组成并进行相关的计算。考点一晶体概念及结构模型1晶体与非晶体(1)晶体与非晶体的比较晶体非晶体结构特征结构微粒周期性有序排列结构微粒无序

2、排列性质特征自范性有无熔点固定不固定异同表现各向异性各向同性二者区别方法间接方法看是否有固定的熔点科学方法对固体进行X射线衍射实验(2)得到晶体的途径熔融态物质凝固。气态物质冷却不经液态直接凝固(凝华)。溶质从溶液中析出。(3)晶胞概念:描述晶体结构的基本单元。晶体中晶胞的排列无隙并置无隙:相邻晶胞之间没有任何间隙。并置:所有晶胞平行排列、取向相同。2晶胞组成的计算均摊法(1)原则晶胞任意位置上的一个原子如果是被n个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是。(2)方法长方体(包括立方体)晶胞中不同位置的粒子数的计算。非长方体晶胞中粒子视具体情况而定,如石墨晶胞每一层内碳原子排成六边形

3、,其顶点(1个碳原子)被三个六边形共有,每个六边形占。3常见晶体结构模型(1)原子晶体(金刚石和二氧化硅)金刚石晶体中,每个C与另外4个C形成共价键,CC 键之间的夹角是10928,最小的环是六元环。含有1 mol C的金刚石中,形成的共价键有2 mol。SiO2晶体中,每个Si原子与4个O原子成键,每个O原子与2个硅原子成键,最小的环是十二元环,在“硅氧”四面体中,处于中心的是Si原子,1 mol SiO2中含有4 mol SiO键。(2)分子晶体干冰晶体中,每个CO2分子周围等距且紧邻的CO2分子有12个。冰的结构模型中,每个水分子与相邻的4个水分子以氢键相连接,含1 mol H2O的冰中

4、,最多可形成2 mol“氢键”。(3)离子晶体NaCl型:在晶体中,每个Na同时吸引6个Cl,每个Cl同时吸引6个Na,配位数为6。每个晶胞含4个Na和4个Cl。CsCl型:在晶体中,每个Cl吸引8个Cs,每个Cs吸引8个Cl,配位数为8。(4)石墨晶体石墨层状晶体中,层与层之间的作用是分子间作用力,平均每个正六边形拥有的碳原子个数是2,C原子采取的杂化方式是sp2。(5)常见金属晶体的原子堆积模型堆积模型常见金属配位数晶胞面心立方最密堆积Cu、Ag、Au12体心立方堆积Na、K、Fe8六方最密堆积Mg、Zn、Ti12(1)冰和碘晶体中相互作用力相同()(2)晶体内部的微粒按一定规律周期性排列

5、()(3)凡有规则外形的固体一定是晶体()(4)固体SiO2一定是晶体()(5)缺角的NaCl晶体在饱和NaCl溶液中会慢慢变为完美的立方体块()(6)晶胞是晶体中最小的“平行六面体”()(7)区分晶体和非晶体最可靠的方法是对固体进行X射线衍射实验()答案(1)(2)(3)(4)(5)(6)(7)1如图为甲、乙、丙三种晶体的晶胞:试写出:(1)甲晶体化学式(X为阳离子)为_。(2)乙晶体中A、B、C三种微粒的个数比是_。(3)丙晶体中每个D周围结合E的个数是_。(4)乙晶体中每个A周围结合B的个数为_。答案(1)X2Y(2)131(3)8(4)122.下图是由Q、R、G三种元素组成的一种高温超

6、导体的晶胞结构,其中R为2价,G为2价,则Q的化合价为_。答案3解析R:812G:88428Q:824R、G、Q的个数之比为142,则其化学式为RQ2G4。由于R为2价,G为2价,所以Q为3价。3(常见晶体结构模型)填空。(1)在金刚石晶体中最小碳环含有_个C原子;每个C原子被_个最小碳环共用。(2)在干冰中粒子间作用力有_。(3)含1 mol H2O的冰中形成氢键的数目为_。(4)在NaCl晶体中,每个Na周围有_个距离最近且相等的Na,每个Na周围有_个距离最近且相等的Cl,其空间构型为_。(5)在CaF2晶体中,每个Ca2周围距离最近且等距离的F有_个;每个F周围距离最近且等距离的Ca2

7、有_个。答案(1)612(2)共价键、范德华力(3)2NA(4)126正八面体型(5)84题组一晶胞粒子数与晶体化学式判断1已知干冰晶胞结构属于面心立方最密堆积,晶胞中最近的相邻两个CO2分子间距为a pm,阿伏加德罗常数为NA,下列说法正确的是()A晶胞中一个CO2分子的配位数是8B晶胞的密度表达式是 gcm3C一个晶胞中平均含6个CO2分子DCO2分子的空间构型是直线形,中心C原子的杂化类型是sp3杂化答案B解析晶胞中一个CO2分子的配位数38212,故A错误;该晶胞中相邻最近的两个CO2分子间距为a pm,即晶胞面心上的二氧化碳分子和其同一面上顶点上的二氧化碳之间的距离为a pm,则晶胞

8、棱长a pma1010 cm,晶胞体积(a1010 cm)3,该晶胞中二氧化碳分子个数864,晶胞密度 gcm3 gcm3,故B正确;该晶胞中二氧化碳分子个数864,故C错误;二氧化碳分子是直线形分子,C原子价层电子对个数是2,根据价层电子对互斥理论判断C原子杂化类型为sp,故D错误。2.石英晶体的平面示意图如图,它实际上是立体的网状结构(可以看作是晶体硅中的每个SiSi键中插入一个O),其中硅、氧原子数比是mn,有关叙述正确的是()Amn21B6 g该晶体中含有0.1NA个分子C原硅酸根(SiO)的结构为,则二聚硅酸根离子Si2O中的x7D石英晶体中由硅、氧原子构成的最小的环上含有的Si、O

9、原子个数和为8答案C解析每个Si原子占有O原子个数42;该晶体是原子晶体,不存在分子;原硅酸(H4SiO4)的结构可表示为,两个原硅酸分子可发生分子间脱水生成二聚原硅酸:,二聚原硅酸电离出6个H后,形成带6个负电荷的二聚原硅酸根离子;在SiO2晶体中,由Si、O构成的最小单元环中共有12个原子。3(1)硼化镁晶体在39 K时呈超导性。在硼化镁晶体中,镁原子和硼原子是分层排布的,下图是该晶体微观结构的透视图,图中的硼原子和镁原子投影在同一平面上。则硼化镁的化学式为_。(2)在硼酸盐中,阴离子有链状、环状等多种结构形式。下图是一种链状结构的多硼酸根,则多硼酸根离子符号为_。答案(1)MgB2(2)

10、BO解析(1)每个Mg周围有6个B,而每个B周围有3个Mg,所以其化学式为MgB2。(2)从图可看出,每个单元中,都有一个B和一个O完全属于这个单元,剩余的2个O分别被两个结构单元共用,所以BO1(12/2)12,化学式为BO。题组二晶体密度及粒子间距的计算4Cu与F形成的化合物的晶胞结构如下图所示,若晶体密度为a gcm3,则Cu与F最近距离为_pm。(NA表示阿伏加德罗常数的值,列出计算表达式,不用化简;图中为Cu,为F)答案 1010解析设晶胞的棱长为x cm,在晶胞中,Cu:864;F:4,其化学式为CuF。ax3NA4M(CuF),x。最短距离为小立方体体对角线的一半,小立方体的体对

11、角线为 x。所以最短距离为x1010 pm。5用晶体的X射线衍射法对Cu的测定得到以下结果:Cu的晶胞为面心立方最密堆积(如下图),已知该晶体的密度为9.00 gcm3,晶胞中该原子的配位数为_;Cu的原子半径为_cm(阿伏加德罗常数为NA,要求列式计算)。答案12 cm1.28108解析设晶胞的边长为a cm,则a3NA464a面对角线为a面对角线的为Cu原子半径r cm1.28108cm。6按要求回答下列问题:(1)Fe单质的晶体在不同温度下有两种堆积方式,分别如图1、图2所示。面心立方晶胞和体心立方晶胞的边长分别为a、b,则铁单质的面心立方晶胞和体心立方晶胞的密度之比为_,铁原子的配位数

12、之比为_。(2)Mg为六方最密堆积,其晶胞结构如图3所示,若在晶胞中建立如图4所示的坐标系,以A为坐标原点,把晶胞的底边边长视作单位长度1,则C点的坐标:_。(3)铁镁合金是目前已发现的储氢密度最高的储氢材料之一,其晶胞结构如图5所示,则铁镁合金的化学式为_。若该晶胞的边长为d nm,则该合金的密度为_ gcm3(列出计算式即可,用NA表示阿伏加德罗常数的值)。答案(1)2b3a332(2)(0,0,)(3)Mg2Fe解析(1)面心立方晶胞边长为a,体积Va3,含有Fe原子数目为864,故ma3(面心)4 g(NA为阿伏加德罗常数的值),体心立方晶胞边长为b,体积Vb3,含有Fe原子数目为81

13、2,故b3(体心)2 g,故(面心)(体心)2b3a3。面心立方晶胞中每个Fe原子周围有12个Fe原子,体心立方晶胞中每个Fe原子周围有8个Fe原子,故Fe原子配位数之比为12832。(2)若建立如图4所示的坐标系,x轴与y轴的夹角为120,以A为坐标原点,把晶胞的底边边长视作单位长度1,则D点与A点、B点以及F点构成一个正四面体,D点位于其顶点,其高度为晶胞高度的一半。由D点向底面作垂线,垂足到底面三角形各点的距离为,D点到垂足的距离为,则C点的坐标为(0,0,)。(3)根据均摊法可知晶胞中铁原子数为864,镁原子数为8,则铁镁合金的化学式是Mg2Fe。由题给条件知,1个晶胞的体积为(d10

14、7)3 cm3,1个晶胞的质量为 g,根据可得合金的密度是 gcm3。考点二四种晶体的性质与判断1四种晶体类型比较 类型比较分子晶体原子晶体金属晶体离子晶体构成粒子分子原子金属阳离子和自由电子阴、阳离子粒子间的相互作用力分子间作用力共价键金属键离子键硬度较小很大有的很大,有的很小较大熔、沸点较低很高有的很高,有的很低较高溶解性相似相溶难溶于任何溶剂常见溶剂难溶大多易溶于水等极性溶剂导电、传热性一般不导电,溶于水后有的导电一般不具有导电性电和热的良导体晶体不导电,水溶液或熔融态导电2.离子晶体的晶格能(1)定义气态离子形成1 mol离子晶体释放的能量,通常取正值,单位:kJmol1。(2)影响因

15、素离子所带电荷数:离子所带电荷数越多,晶格能越大。离子的半径:离子的半径越小,晶格能越大。(3)与离子晶体性质的关系晶格能越大,形成的离子晶体越稳定,且熔点越高,硬度越大。(1)在晶体中只要有阴离子就一定有阳离子()(2)在晶体中只要有阳离子就一定有阴离子()(3)原子晶体的熔点一定比金属晶体的高()(4)分子晶体的熔点一定比金属晶体的低()(5)离子晶体一定都含有金属元素()(6)金属元素和非金属元素组成的晶体不一定是离子晶体()(7)原子晶体的熔点一定比离子晶体的高()答案(1)(2)(3)(4)(5)(6)(7)1在下列物质中:NaCl、NaOH、Na2S、H2O2、Na2S2、(NH4

16、)2S、CO2、CCl4、C2H2、SiO2、SiC、晶体硅、金刚石、晶体氩。(1)其中只含有离子键的离子晶体是_。(2)其中既含有离子键又含有极性共价键的离子晶体是_。(3)其中既含有离子键又含有极性共价键和配位键的离子晶体是_。(4)其中既含有离子键又含有非极性共价键的离子晶体是_。(5)其中含有极性共价键的非极性分子是_。(6)其中含有极性共价键和非极性共价键的非极性分子是_。(7)其中含有极性共价键和非极性共价键的极性分子是_。(8)其中含有极性共价键的原子晶体是_。(9)不含共价键的分子晶体是_,只含非极性共价键的原子晶体是_。答案(1)NaCl、Na2S(2)NaOH、(NH4)2

17、S(3)(NH4)2S(4)Na2S2(5)CO2、CCl4、C2H2(6)C2H2(7)H2O2(8)SiO2、SiC(9)晶体氩晶体硅、金刚石2比较下列晶格能大小。(1)NaCl_KCl;(2)CaF2_MgO;(3)Na2S_Na2O;(4)CaO_KCl。答案(1)(2)(3)(4)题组一晶体类型判断1(1)CO能与金属Fe形成Fe(CO)5,该化合物熔点为253 K,沸点为376 K,其固体属于_晶体。(2)2015全国卷,37(2)节选O和Na的氢化物所属的晶体类型分别为_和_。(3)NF3可由NH3和F2在Cu催化剂存在下反应直接得到:4NH33F2NF33NH4F上述化学方程式

18、中的5种物质所属的晶体类型有_(填序号)。a离子晶体 b分子晶体c原子晶体 d金属晶体答案(1)分子(2)分子晶体离子晶体(3)abd2(1)用“”或“”填空:第一电离能离子半径熔点酸性Si_SO2_NaNaCl_SiH2SO4_HClO4(2)MgCl2在工业上应用广泛,可由MgO制备。MgO的熔点比BaO的熔点_(填“高”或“低”)。SiO2的晶体类型为_。(3)对于钠的卤化物(NaX)和硅的卤化物(SiX4),下列叙述正确的是_。ASiX4难水解BSiX4是共价化合物CNaX易水解DNaX的熔点一般高于SiX4答案(1)KClRbClCsCl,其原因为_。答案(1)原子共价键(2)(3)

19、HF分子间能形成氢键,其熔化时需要消耗的能量更多(只要答出HF分子间能形成氢键即可)(4)(5)D组晶体都为离子晶体,r(Na)r(K)r(Rb)r(Cs),在离子所带电荷数相同的情况下,半径越小,晶格能越大,熔点就越高解析(1)A组熔点很高,为原子晶体,是由原子通过共价键形成的。(2)B组为金属晶体,具有四条共性。(3)HF中含有分子间氢键,故其熔点反常。(4)D组属于离子晶体,具有两条性质。(5)D组属于离子晶体,其熔点与晶格能有关。题组二晶体性质及应用4下列性质适合于分子晶体的是()A熔点为1 070 ,易溶于水,水溶液导电B熔点为3 500 ,不导电,质硬,难溶于水和有机溶剂C能溶于C

20、S2,熔点为112.8 ,沸点为444.6 D熔点为97.82 ,质软,导电,密度为0.97 gcm3答案C解析A、B选项中的熔点高,不是分子晶体的性质,D选项是金属钠的性质,钠不是分子晶体。5(2018河南六市第一次联考)A族元素及其化合物在材料等方面有重要用途。回答下列问题:(1)碳的一种单质的结构如图(a)所示。该单质的晶体类型为_,依据电子云的重叠方式,原子间存在的共价键类型有_,碳原子的杂化轨道类型为_。(2)石墨烯是从石墨材料中剥离出来的、由单质碳原子组成的二维晶体。将氢气加入石墨烯中可制得一种新材料石墨烷。下列判断错误的是_(填字母)。A石墨烯是一种强度很高的材料B石墨烯是电的良

21、导体而石墨烷则为绝缘体C石墨烯与石墨烷均为高分子化合物D石墨烯与H2制得石墨烷的反应属于加成反应(3)CH4、SiH4、GeH4的熔、沸点依次_(填“增大”或“减小”),其原因是_。(4)SiO2比CO2熔点高的原因是_。(5)四卤化硅SiX4的沸点和二卤化铅PbX2的熔点如图(b)所示。SiX4的沸点依F、Cl、Br、I次序升高的原因是_。结合SiX4的沸点和PbX2的熔点的变化规律,可推断:依F、Cl、Br、I次序,PbX2中的化学键的离子性_、共价性_。(填“增强”“不变”或“减弱”)(6)水杨酸第一级电离形成离子,相同温度下,水杨酸的Ka2_苯酚()的Ka(填“”“”或“”),其原因是

22、_。(7)碳的另一种单质C60可以与钾形成低温超导化合物,晶体结构如图(c)所示,K位于立方体的棱上和立方体的内部,此化合物的化学式为_;其晶胞参数为1.4 nm,阿伏加德罗常数用NA表示,则晶体的密度为_ gcm3。(只需列出式子)答案(1)混合型晶体键、键sp2(2)C(3)增大三种物质均为分子晶体,结构与组成相似,相对分子质量越大,范德华力越大,熔、沸点越高(4)SiO2为原子晶体而CO2为分子晶体(5)均为分子晶体,范德华力随相对分子质量增大而增大减弱增强(6)CH3OHCO2H2H2O与CH3OH均为极性分子,水中氢键比甲醇中多;CO2与H2均为非极性分子,CO2相对分子质量较大,范

23、德华力较大(3)GaF3为离子晶体,GaCl3为分子晶体(4)O3O3相对分子质量较大且是极性分子,范德华力较大4晶胞中微粒数的计算(1)2018全国卷,35(5)金属Zn晶体中的原子堆积方式如图所示,这种堆积方式称为_。六棱柱底边边长为a cm,高为c cm,阿伏加德罗常数的值为NA,Zn的密度为_ gcm3(列出计算式)。(2)2016全国卷,37(6)改编Ge单晶具有金刚石型结构。晶胞的原子坐标参数表示晶胞内部各原子的相对位置,下图为Ge单晶的晶胞,其中原子坐标参数A为(0,0,0);B为(,0,);C为(,0)。则D原子的坐标参数为(,)。晶胞参数,描述晶胞的大小和形状,已知Ge单晶的

24、晶胞参数a565.76 pm,其密度为_ gcm3(列出计算式即可)。(3)2017全国卷,35(4)(5)KIO3晶体是一种性能良好的非线性光学材料,具有钙钛矿型的立体结构,边长为a0.446 nm,晶胞中K、I、O分别处于顶角、体心、面心位置,如图所示。K与O间的最短距离为_ nm,与K紧邻的O个数为_。在KIO3晶胞结构的另一种表示中,I处于各顶角位置,则K处于_位置,O处于_位置。(4)2017全国卷,35MgO具有NaCl型结构(如图),其中阴离子采用面心立方最密堆积方式,X射线衍射实验测得MgO的晶胞参数为a0.420 nm,则r(O2)为_nm。MnO也属于NaCl型结构,晶胞参

25、数为a0.448 nm,则r(Mn2)为_nm。答案(1)六方最密堆积(A3型)(2)107(3)0.315(或0.446) 12体心棱心(4)0.148 0.076解析(3)根据晶胞结构可知,K与O间的最短距离为面对角线的一半,即nm 0.315 nm。K、O构成面心立方,配位数为12(同层4个,上、下层各4 个)。(4)由题意知在MgO中,阴离子作面心立方堆积,氧离子沿晶胞的面对角线方向接触,所以a2r(O2),r(O2)0.148 nm;MnO的晶胞参数比MgO更大,说明阴离子之间不再接触,阴、阳离子沿坐标轴方向接触,故2r(Mn2)r(O2)a,r(Mn2)0.076 nm。1(1)S

26、iC的晶体结构与晶体硅的相似,其中C原子的杂化方式为_,微粒间存在的作用力是_。SiC晶体和晶体Si的熔、沸点高低顺序是_。(2)氧化物MO的电子总数与SiC的相等,则M为_(填元素符号)。MO是优良的耐高温材料,其晶体结构与NaCl晶体相似。MO的熔点比CaO的高,其原因是_。(3)C、Si为同一主族的元素,CO2和SiO2的化学式相似,但结构和性质有很大的不同。CO2中C与O原子间形成键和键,SiO2中Si与O原子间不形成上述键。从原子半径大小的角度分析,为何C、O原子间能形成上述键,而Si、O原子间不能形成上述键:_,SiO2属于_晶体,CO2属于_晶体,所以熔点CO2_(填“”“”或“

27、”)SiO2。(4)金刚石、晶体硅、二氧化硅、MgO、CO2、Mg六种晶体的构成微粒分别是_,熔化时克服的微粒间的作用力分别是_。答案(1)sp3共价键SiCSi(2)MgMg2半径比Ca2小,MgO晶格能大(3)Si的原子半径较大,Si、O原子间距离较大,pp轨道肩并肩重叠程度较小,不能形成上述稳定的键原子分子(4)原子、原子、原子、阴阳离子、分子、金属阳离子与自由电子共价键、共价键、共价键、离子键、分子间作用力、金属键解析(1)晶体硅中一个硅原子周围与4个硅原子相连,呈正四面体结构,所以C原子杂化方式是sp3。因为SiC 的键长小于SiSi,所以熔、沸点碳化硅晶体硅。(2)SiC电子总数是

28、20个,则该氧化物为MgO;晶格能与所构成离子所带电荷成正比,与离子半径成反比,MgO与CaO的离子电荷数相同,Mg2半径比Ca2小,MgO晶格能大,熔点高。(4)金刚石、晶体硅、二氧化硅均为原子晶体,构成微粒均为原子,熔化时破坏共价键;Mg为金属晶体,由金属阳离子和自由电子构成,熔化时克服金属键;CO2为分子晶体,由分子构成,分子间以分子间作用力结合;MgO为离子晶体,由Mg2和O2构成,熔化时破坏离子键。2(2018合肥一中质检)(1)钠、钾、铬、钼、钨等金属晶体的晶胞属于体心立方,则该晶胞中属于1个体心立方晶胞的金属原子数目是_。氯化铯晶体的晶胞如图1,则Cs位于该晶胞的_,而Cl位于该

29、晶胞的_,Cs的配位数是_。(2)铜的氢化物的晶体结构如图2所示,写出此氢化物在氯气中燃烧的化学方程式:_。(3)图3为F与Mg2、K形成的某种离子晶体的晶胞,其中“”表示的离子是_(填离子符号)。(4)实验证明:KCl、MgO、CaO、TiN这4种晶体的结构与NaCl晶体结构相似(如图4所示),已知3种离子晶体的晶格能数据如下表:离子晶体NaClKClCaO晶格能/kJmol17867153 401则这4种离子晶体(不包括NaCl)熔点从高到低的顺序是_。其中MgO晶体中一个Mg2周围和它最邻近且等距离的Mg2有_个。答案(1)2体心顶点8(2)2CuH3Cl22CuCl22HCl(3)F(4)TiNMgOCaOKCl12解析(1)体心立方晶胞中,1个原子位于体心,8个原子位于立方体的顶点,故1个晶胞中金属原子数为812;氯化铯晶胞中,Cs位于体心,Cl位于顶点,Cs的配位数为8。(2)由晶胞可知,粒子个数比为11(铜为864,H为4),化学式为CuH,1价的铜与

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁