初二数学动点问答题学习总结.doc

举报
资源描述
+\ 初二动点问题 1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速 度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s) 即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时, 四边形PQCD为直角梯形即3t-(24-t)=2 解得:t=6.5(s) 即当t=6.5(s)时,四边形PQCD为直角梯形. 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 分析: (1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO. (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形. (3)利用已知条件及正方形的性质解答. 解答: 解:(1)∵CE平分∠ACB, ∴∠ACE=∠BCE, ∵MN∥BC, ∴∠OEC=∠ECB, ∴∠OEC=∠OCE, ∴OE=OC, 同理,OC=OF, ∴OE=OF. (2)当点O运动到AC中点处时,四边形AECF是矩形. 如图AO=CO,EO=FO, ∴四边形AECF为平行四边形, ∵CE平分∠ACB, ∴∠ACE= ∠ACB, 同理,∠ACF= ∠ACG, ∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= 180=90, ∴四边形AECF是矩形. (3)△ABC是直角三角形 ∵四边形AECF是正方形, ∴AC⊥EN,故∠AOM=90, ∵MN∥BC, ∴∠BCA=∠AOM, ∴∠BCA=90, ∴△ABC是直角三角形. 点评: 本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用. 3. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由. 分析: 以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形的必须条件是点P、N重合且点Q、M不重合,此时AP+ND=AD即2x+x2=20cm,BQ+MC≠BC即x+3x≠20cm;或者点Q、M重合且点P、N不重合,此时AP+ND≠AD即2x+x2≠20cm,BQ+MC=BC即x+3x=20cm.所以可以根据这两种情况来求解x的值. 以P,Q,M,N为顶点的四边形是平行四边形的话,因为由第一问可知点Q只能在点M的左侧.当点P在点N的左侧时,AP=MC,BQ=ND;当点P在点N的右侧时,AN=MC,BQ=PD.所以可以根据这些条件列出方程关系式. 如果以P,Q,M,N为顶点的四边形为等腰梯形,则必须使得AP+ND≠AD即2x+x2≠20cm,BQ+MC≠BC即x+3x≠20cm,AP=ND即2x=x2,BQ=MC即x=3x,x≠0.这些条件不能同时满足,所以不能成为等腰梯形. 解答: 解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形. ①当点P与点N重合时,由x2+2x=20,得x1= -1,x2=- -1(舍去). 因为BQ+CM=x+3x=4( -1)<20,此时点Q与点M不重合. 所以x= -1符合题意. ②当点Q与点M重合时,由x+3x=20,得x=5. 此时DN=x2=25>20,不符合题意. 故点Q与点M不能重合. 所以所求x的值为 -1. (2)由(1)知,点Q只能在点M的左侧, ①当点P在点N的左侧时, 由20-(x+3x)=20-(2x+x2), 解得x1=0(舍去),x2=2. 当x=2时四边形PQMN是平行四边形. ②当点P在点N的右侧时, 由20-(x+3x)=(2x+x2)-20, 解得x1=-10(舍去),x2=4. 当x=4时四边形NQMP是平行四边形. 所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形. (3)过点Q,M分别作AD的垂线,垂足分别为点E,F. 由于2x>x, 所以点E一定在点P的左侧. 若以P,Q,M,N为顶点的四边形是等腰梯形, 则点F一定在点N的右侧,且PE=NF, 即2x-x=x2-3x. 解得x1=0(舍去),x2=4. 由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形, 所以以P,Q,M,N为顶点的四边形不能为等腰梯形. 点评: 本题考查到三角形、平行四边形、等腰梯形等图形的边的特点. 4. 如图,在梯形ABCD中,AD∥BC,∠B=90,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒. (1)当t为何值时,四边形MNCD是平行四边形? (2)当t为何值时,四边形MNCD是等腰梯形? 分析: (1)根据平行四边形的性质,对边相等,求得t值; (2)根据等腰梯形的性质,下底减去上底等于12,求解即可. 解答: 解:(1)∵MD∥NC,当MD=NC,即15-t=2t,t=5时,四边形MNCD是平行四边形; (2)作DE⊥BC,垂足为E,则CE=21-15=6,当CN-MD=12时,即2t-(15-t)=12,t=9时,四边形MNCD是等腰梯形 点评: 考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容. 5. 如图,在直角梯形ABCD中,AD∥BC,∠C=90,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s). (1)设△BPQ的面积为S,求S与t之间的函数关系; (2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形? 分析: (1)若过点P作PM⊥BC于M,则四边形PDCM为矩形,得出PM=DC=12,由QB=16-t,可知:s= PMQB=96-6t; (2)本题应分三种情况进行讨论,①若PQ=BQ,在Rt△PQM中,由PQ2=PM2+MQ2,PQ=QB,将各数据代入,可将时间t求出; ②若BP=BQ,在Rt△PMB中,由PB2=BM2+PM2,BP=BQ,将数据代入,可将时间t求出; ③若PB=PQ,PB2=PM2+BM2,PB=PQ,将数据代入,可将时间t求出. 解答: 解:(1)过点P作PM⊥BC于M,则四边形PDCM为矩形. ∴PM=DC=12, ∵QB=16-t, ∴s= •QB•PM= (16-t)12=96-6t(0≤t≤ ). (2)由图可知,CM=PD=2t,CQ=t,若以B、P、Q为顶点的三角形是等腰三角形,可以分三种情况 : ①若PQ=BQ,在Rt△PMQ中,PQ2=t2+122,由PQ2=BQ2得t2+122=(16-t)2,解得 ; ②若BP=BQ,在Rt△PMB中,PB2=(16-2t)2+122,由PB2=BQ2得(16-2t)2+122=(16-t)2,此方程无解,∴BP≠PQ. ③若PB=PQ,由PB2=PQ2得t2+122=(16-2t)2+122得 ,t2=16(不合题意,舍去). 综上所述,当 或 时,以B、P、Q为顶点的三角形是等腰三角形. 点评: 本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象. 6. 直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动. (1)直接写出A、B两点的坐标; (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式; (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标. 分析: (1)分别令y=0,x=0,即可求出A、B的坐标; (2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出, 当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQPD,即可求出答案; (3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标. 解答: 解:(1)y=0,x=0,求得A(8,0)B(0,6), (2)∵OA=8,OB=6,∴AB=10. ∵点Q由O到A的时间是 81=8(秒), ∴点P的速度是 6+108=2(单位长度/秒). 当P在线段OB上运动(或O≤t≤3)时, OQ=t,OP=2t,S=t2. 当P在线段BA上运动(或3<t≤8)时, OQ=t,AP=6+10-2t=16-2t, 如图,做PD⊥OA于点D, 由 PDBO=APAB,得PD= 48-6t5. ∴S= 12OQ•PD=- 35t2+245t. (3)当S= 485时,∵ 485>1236∴点P在AB上 当S= 485时,- 35t2+245t= 485 ∴t=4 ∴PD= 48-645= 245,AD=16-24=8 AD= 82-(245)2= 325 ∴OD=8- 325= 85 ∴P( 85, 245) M1( 285, 245),M2(- 125, 245),M3( 125,- 245) 点评: 本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁