四川省成都市新都一中必修一同步练习:第一章 集合与函数 第10课时 函数的单调性 .docx

上传人:荣*** 文档编号:2679255 上传时间:2020-04-27 格式:DOCX 页数:3 大小:92.70KB
返回 下载 相关 举报
四川省成都市新都一中必修一同步练习:第一章 集合与函数 第10课时 函数的单调性 .docx_第1页
第1页 / 共3页
四川省成都市新都一中必修一同步练习:第一章 集合与函数 第10课时 函数的单调性 .docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《四川省成都市新都一中必修一同步练习:第一章 集合与函数 第10课时 函数的单调性 .docx》由会员分享,可在线阅读,更多相关《四川省成都市新都一中必修一同步练习:第一章 集合与函数 第10课时 函数的单调性 .docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、四川省成都市新都一中高一同步练习第一章集合与函数的概念第10课时函数的单调性基础达标(水平一)1.函数y=2k+1x+b在(0,+)上是增函数,则().A.k12B.k-12D.k-12【解析】因为函数y=2k+1x+b在(0,+)上是增函数,所以2k+10,即k0,-12a2,所以00时,-b2a0b0,y=2ax+b的图象可能是C;当a0时,-b2a0b0,y=2ax+b的图象可能是D.故y=2ax+b的图象不可能是B.【答案】B5.已知函数f(x)是定义在-2,2上的增函数,且f(1-m)f(m),则实数m的取值范围是.【解析】因为f(x)在-2,2上单调递增,且f(1-m)f(m),所

2、以-2m2,-21-m2,1-mm,解得12m2.所以实数m的取值范围为12,2.【答案】12,26.函数f(x)=x2-2mx-3在区间1,2上单调,则m的取值范围是.【解析】函数f(x)图象的对称轴为直线x=m,要使f(x)在1,2上单调,则m不能在区间1,2内部,m2或m1.【答案】(-,1或2,+)7.已知函数f(x)=x2,x2,6-x,x2.(1)求f(-3),f(3);(2)画出函数f(x)的图象,并写出单调区间.【解析】(1)f(-3)=(-3)2=9,f(3)=6-3=3.(2)函数的图象如图所示.由图象知函数f(x)的单调递减区间为(-,0和2,+),单调递增区间为(0,2

3、).拓展提升(水平二)8.若函数f(x)在区间(a,b)上单调递增,在区间(b,c)上也单调递增,则函数f(x)在区间(a,b)(b,c)上().A.必是增函数B.必是减函数C.是增函数或减函数D.无法确定单调性【解析】函数在区间(a,b)(b,c)上无法确定单调性.如函数y=-1x在(0,+)上单调递增,在(-,0)上也单调递增,但在(-,0)(0,+)上并不具有单调性.故选D.【答案】D9.已知f(x)=(3a-1)x+4a,x1,-x+1,x1是定义在R上的减函数,则实数a的取值范围是().A.17,+B.17,13C.-,13D.-,1713,+【解析】当x1时,函数f(x)=-x+1

4、为减函数,此时函数的最大值为f(1)=0,要使f(x)在R上的是减函数,需满足3a-10,3a-1+4af(1)=0,即a0)满足f(1)=0,且b=2c,则函数f(x)的单调递增区间为.【解析】因为f(1)=a+b+c=0,b=2c,所以a=-3c,所以函数f(x)图象的对称轴为直线x=13.又因为a0,所以f(x)的单调递增区间为13,+.【答案】13,+11.设函数f(x)的定义域为R,当x1,且对任意的实数x,yR,有f(x+y)=f(x)f(y).(1)求f(0)的值.(2)证明:f(x)在R上是减函数.【解析】(1)x,yR,f(x+y)=f(x)f(y),当x1,令x=-1,y=0,f(-1)=f(-1)f(0).f(-1)1,f(0)=1.(2)若x0,则-x0,任取x10,0f(x2-x1)1,f(x2)f(x1).故f(x)在R上是减函数.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁