2020年高考数学一轮复习第十章算法初步复数与鸭内容第4讲不等式选讲第1课时不等式的证明课件理.ppt

上传人:荣*** 文档编号:2675332 上传时间:2020-04-27 格式:PPT 页数:41 大小:3.42MB
返回 下载 相关 举报
2020年高考数学一轮复习第十章算法初步复数与鸭内容第4讲不等式选讲第1课时不等式的证明课件理.ppt_第1页
第1页 / 共41页
2020年高考数学一轮复习第十章算法初步复数与鸭内容第4讲不等式选讲第1课时不等式的证明课件理.ppt_第2页
第2页 / 共41页
点击查看更多>>
资源描述

《2020年高考数学一轮复习第十章算法初步复数与鸭内容第4讲不等式选讲第1课时不等式的证明课件理.ppt》由会员分享,可在线阅读,更多相关《2020年高考数学一轮复习第十章算法初步复数与鸭内容第4讲不等式选讲第1课时不等式的证明课件理.ppt(41页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第4讲不等式选讲,第1课时不等式的证明,1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)|ab|a|b|;(2)|ab|ac|cb|;(3)会利用绝对值的几何意义求解以下类型的不等式:|axb|c;|axb|c;|xa|xb|c.,1.常用的证明不等式的方法,(1)比较法:比较法包括作差比较法和作商比较法.,(2)综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式.,(3)分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如

2、果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立.,(4)反证法:可以从正难则反的角度考虑,即要证明不等式AB,先假设AB,由题设及其他性质,推出矛盾,从而肯定AB.凡涉及的证明不等式为否定命题、唯一性命题或含有“至多”“至少”“不存在”“不可能”等词语时,都可以考虑用反证法.,(5)放缩法:要证明不等式A0,|f(x)|af(x)a.(2)理解绝对值的几何意义:|a|b|ab|a|b|.,答案:A,2.已知x,yR,满足x22xy4y26,则zx24y2的最,小值为_.,4,的最大值为_.,考点1,比较法证明不等式,考向1,求差法比较大小,例1:已知函数f(x)|x1|x2|.(1

3、)求不等式22|mn|.,【规律方法】比较法证不等式的步骤可归纳为:,作差并化简,其化简目标应是n个因式之积或完全平方,式或常数的形式;,判断差值与零的大小关系,必要时需进行讨论;得出结论.,考向2求商法比较大小,例2:已知正数a,b,求证:aabbabba.,思路点拨:根据同底数幂的运算法则,可考虑作商比较法.,【规律方法】(1)由于所证不等式对于a,b具有轮换对称性,故不妨设ab0,这样处理既不影响结果,又可避免后面的讨论,尤其是有三个或三个以上的字母,分类讨论不太可能,这种方法显得更加便利.,(2)比较法的关键是第二步的变形,一般说来,变形越彻底,,对下一步的判断就越有利.,考点2,综合

4、法证明不等式,例3:(2017年新课标)已知a0,b0,a3b32.证明:(1)(ab)(a5b5)4;(2)ab2.证明:(1)(ab)(a5b5)a6ab5a5bb6(a3b3)22a3b3ab(a4b4)4ab(a2b2)24.当且仅当ab1时,等号成立.,(2)因为(ab)3a33a2b3ab2b3,所以(ab)38,因此ab2.当且仅当ab1时,等号成立.【规律方法】综合法:利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件.综合法证明不等式的逻辑关系是:AB1B2BnB,及从已知条件A出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B.,【互动探究】,1.已

5、知函数f(x)|x1|.,(1)若x0R,使不等式f(x2)f(x3)u成立,求满足,条件的实数u的集合M;,(2)已知t为集合M中的最大正整数,若a1,b1,c1,,且(a1)(b1)(c1)t,求证:abc8.,解:(1)由已知,得f(x2)f(x3)|x1|x2|,则1f(x)1.,由于x0R,使不等式|x1|x2|u成立,所以u1,即Mu|u1.,2.已知关于x的不等式|xm|2x0的解集为x|x2,,其中m0.,(1)求m的值;,(1)解:由已知,得|xm|2x0,,由于m0,所以不等式组的解集为x|xm.由题设,可得m2,故m2.,(2)证明:由(1)可知,abc2,,考点3,分析

6、法证明不等式,例4:(2017年广东广州二模)(1)已知abc1,,(2)若对任意实数x,不等式|xa|2x1|2恒成立,求实数a的取值范围.,(1)证明:因为abc1,所以(a1)2(b1)2(c1)2,a2b2c22(abc)3a2b2c25.,因为a2b2c2(abc)22(abbcca)(abc)22(a2b2c2),所以3(a2b2c2)(abc)2.,【规律方法】分析法证明不等式,就是“执果索因”,从所证的不等式出发,不断用充分条件代替前面的不等式,直至使不等式成立的条件已具备,就断定原不等式成立.当证题不知从何入手时,有时可以运用分析法而获得解决,特别对于条件简单而结论复杂的题目

7、往往是行之有效的方法.,用分析法论证“若A,则B”这个命题的模式是:欲证命题B为真,只需证明命题B1为真,从而又只需证明命题B2为真,从而又只需证明命题A为真,今已知A真,故B必真.简写为:BB1B2BnA.,【互动探究】,即证1coscossinsin2coscos,只需证1cos(),结论显然成立.故原不等式成立.,考点4,反证法证明不等式,易错、易混、易漏放缩法证明不等式中正确把握放缩的度,【失误与防范】(1)在利用放缩法解题时,一定要注意经过放缩后的结果要尽量接近结论并且有利于运算;(2)在利用放缩法解题时,一定要注意“放缩”都应适度,放得过大或缩得过小都达不到预想的效果,如在解本题时,我们是第一、二项没变,从第三项起开始变形,恰好得到我们想,果从第四项开始变形,我们会得到什么结论?是否比原结论更精确?为什么?,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁