《高数必不挂-D8_2偏导数.ppt》由会员分享,可在线阅读,更多相关《高数必不挂-D8_2偏导数.ppt(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二节机动 目录 上页 下页 返回 结束 一、一、 偏导数概念及其计算偏导数概念及其计算二二 、高阶偏导数、高阶偏导数 偏 导 数 第八章 一、一、 偏导数定义及其计算法偏导数定义及其计算法引例引例:研究弦在点 x0 处的振动速度与加速度 , 就是),(txu0 xoxu中的 x 固定于求一阶导数与二阶导数.),(txux0 处,),(0txu),(0txu关于 t 的机动 目录 上页 下页 返回 结束 将振幅定义定义1.),(yxfz 在点), (), (lim000yfyfx存在,xyxyxfz对在点),(),(00的偏导数,记为;),(00yxxz),(00yx的某邻域内;),(00yx
2、xfxx00 x则称此极限为函数极限设函数)(0 xf)()(00 xfxxfx0limxx; ),(00yxfx;),(00yxxz0ddxxxy. ),(001yxf 机动 目录 上页 下页 返回 结束 xyxfyxxfx),(),(lim000000),(dd0 xxyxfx),(00yxfx注意注意:0),(dd0yyyxfy同样可定义对 y 的偏导数 lim0y),(00yxfy若函数 z = f ( x , y ) 在域 D 内每一点 ( x , y ) 处对 x,xzxfxz则该偏导数称为偏导函数, 也简称为偏导数偏导数 ,),(, ),(1yxfyxfx),(, ),(2yxf
3、yxfy) ,(0 xf),(0 xfy记为yy00y机动 目录 上页 下页 返回 结束 或 y 偏导数存在 ,yzyfyz),(zyxfx例如例如, 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的偏导数的概念可以推广到二元以上的函数 . lim0 x), (zyf),(zyfxxx?),(zyxfy?),(zyxfzx机动 目录 上页 下页 返回 结束 偏导数定义为(请自己写出)二元函数偏导数的几何意义二元函数偏导数的几何意义:00),(dd00 xxyxfxxfxxyy0),(yyyxfzxTM000),(dd00yyyxfyyfxxyy是曲线0)
4、,(xxyxfzyTM0在点 M0 处的切线对 x 轴的斜率.在点M0 处的切线斜率.是曲线yxz0 xyToxT0y0M机动 目录 上页 下页 返回 结束 对 y 轴的函数在某点各偏导数都存在,显然例如例如, ,0,00,),(222222yxyxyxyxyxfz0)0,(dd)0, 0(xxfxfx0), 0(dd)0, 0(yyfyfy00注意:注意:但在该点不一定连续不一定连续.上节例 目录 上页 下页 返回 结束 在上节已证 f (x , y) 在点(0 , 0)并不连续!例例1 . 求223yyxxz解法解法1:xz)2, 1 (xz解法解法2:) 2, 1(xz在点(1 , 2)
5、 处的偏导数.) 2, 1(yz,32yx yzyx23 ,82312)2, 1 (yz72213462xx1)62(xx81xz231yy 2)23(yy72yz机动 目录 上页 下页 返回 结束 例例2. 设,)且1, 0(xxxzyzyzxxzyx2ln1 证证:xzyzxxzyxln1 例例3. 求222zyxr的偏导数 . (P14 例4)解解:xryryyxx yz求证,1yxyxxylnz22222zyxx2rxrzzr,ry机动 目录 上页 下页 返回 结束 偏导数记号是一个例例4. 已知理想气体的状态方程求证:1pTTVVpTRVp证证:,VTRp ,pTRV ,RVpT p
6、TTVVp说明说明:(R 为常数) , Vp2VTRTVpRpTRVVpTR1不能看作分子与分母的商 !此例表明,机动 目录 上页 下页 返回 结束 整体记号,二、高阶偏导数二、高阶偏导数设 z = f (x , y)在域 D 内存在连续的偏导数),(, ),(yxfyzyxfxzyx若这两个偏导数仍存在偏导数,)(xz)(yzx )(xzy ),()(22yxfyzyzyyy则称它们是z = f ( x , y ) 的二阶偏导数 . 按求导顺序不同, 有下列四个二阶偏导22xz);,(yxfxxyxz2),(yxfyx);,(2yxfxyzxyx机动 目录 上页 下页 返回 结束 数:类似可
7、以定义更高阶的偏导数.例如,例如,z = f (x , y) 关于 x 的三阶偏导数为3322)(xzxzxz = f (x , y) 关于 x 的 n 1 阶偏导数 , 再关于 y 的一阶) (yyxznn1机动 目录 上页 下页 返回 结束 偏导数为11nnxzyxe22例例5. 求函数yxez2.23xyz解解 :xz22xz) ( 223xyzxxyzyzxyz2yxz2 22 yz注意注意: :此处,22xyzyxz但这一结论并不总成立.yxe2yxe22yxe2yxe22yxe22yxe24机动 目录 上页 下页 返回 结束 的二阶偏导数及 0,)(4222224224yxyxyy
8、xxxyfyfxxy)0, 0(), 0(lim0),(yxfy例如例如,),(yxfx)0 , 0(yxfxfxffyyxxy)0, 0()0,(lim)0 , 0(0二者不等yyy0lim1xxx0lim1),(yxf0, 022 yx0,)(4222224224yxyxyyxxy0,022 yx0,222222yxyxyxyx0, 022 yx机动 目录 上页 下页 返回 结束 例例6. 证明函数222,1zyxrru满足拉普拉斯0222222zuyuxu证:证:xu22xu利用对称性 , 有,3152322ryryu222222zuyuxuu方程xrr21rxr2131rxrrx435
9、2331rxr5232231rzrzu52223)(33rzyxr2r0机动 目录 上页 下页 返回 结束 ,),()()(00连续都在点和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx则证明 目录 上页 下页 返回 结束 定理定理.例如例如, 对三元函数 u = f (x , y , z) ,),(),(),(zyxfzyxfzyxfyxzxzyzyx说明说明:本定理对 n 元函数的高阶混合导数也成立.函数在其定义区域内是连续的 , 故求初等函数的高阶导数可以选择方便的求导顺序.),(),(),(zyxfzyxfzyxfxyzzxyyzx因为初等函数的偏导数仍为初等函
10、数 ,当三阶混合偏导数在点 (x , y , z) 连续连续时, 有而初等(证明略) 证证: :令),(),(),(0000yxxfyyxxfyxF),(),()(00yxfyyxfx则),(yxFxxx)(10 xyxxfyyxxfxx ),(),(010010yxyyxxfyx),(2010),(),(0000yxfyyxf),(),()(00yxfyxxfy)10(1)1,0(21,),()()(00连续都在点和若yxx,yfx,yfxyyx),(),(0000yxfyxfxyyx则)()(00 xxx机动 目录 上页 下页 返回 结束 定理定理.令),(),(),(0000yxxfyy
11、xxfyxF),(),(0000yxfyyxf同样)()(00yyyyxyyxxfxy),(4030) 1,0(43),(),(0000yxfyxfxyyx)()(因yxfyxfxyyx, 0 x故令),(4030yyxxfxy),(2010yyxxfyx在点)(00yx ,连续,得机动 目录 上页 下页 返回 结束 0y内容小结内容小结1. 偏导数的概念及有关结论 定义; 记号; 几何意义 函数在一点偏导数存在函数在此点连续 混合偏导数连续与求导顺序无关2. 偏导数的计算方法 求一点处偏导数的方法先代后求先求后代利用定义 求高阶偏导数的方法逐次求导法(与求导顺序无关时, 应选择方便的求导顺序
12、)机动 目录 上页 下页 返回 结束 思考与练习思考与练习解答提示: P73 题 5,时当022 yx222),(yxyxxyxfx222),(yxyxyyxfy,022 yx当0)0 ,(dd)0 , 0(xxfxfx0), 0(dd)0 , 0(yyfyfy00P73 题 5 , 62223)(2yxyx222222)()(yxyxx即 xy0 时,机动 目录 上页 下页 返回 结束 P73 题6(1),12yxxz22yxyyz,)(12222yxxz,)(2222yxyyxz22222)()(2yxyxyz(2),1yxyxzxxyzyln,) 1(2 .22yxyyxzxxyxyxz
13、yyln1 .12xxyzy222ln机动 目录 上页 下页 返回 结束 作业作业P18 1(4),(6),(8); 3; 5; 6(3); 7; 8; 9(2)第三节 目录 上页 下页 返回 结束 ,)(xuuf备用题备用题 设, )(ufz 方程)(uuxytdtp )(确定 u 是 x , y 的函数 ,)(, )(可微其中uuf)(),(utp连续, 且, 1)( u求.)()(yzxpxzyp解解:xzyuufyz)(xuuxu)()(xpyuuyu)()(ypxu)(1)(uxpyu)(1)(uyp)(uf yzxpxzyp)()(yuxpxuyp)()(0机动 目录 上页 下页 返回 结束