《海淀区初二上期末数学知识点总结新人教版.docx》由会员分享,可在线阅读,更多相关《海淀区初二上期末数学知识点总结新人教版.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品名师归纳总结一、全等三角形第十一章全等三角形复习可编辑资料 - - - 欢迎下载精品名师归纳总结1. 定义:能够完全重合的两个三角形叫做全等三角形。懂得:全等三角形外形与大小完全相等,与位置无关。一个三角形经过平移、翻折、旋转可以得到它的全等形。三角形全等不因位置发生变化而转变。2、全等三角形有哪些性质( 1)全等三角形的对应边相等、对应角相等。懂得:长边对长边,短边对短边。最大角对最大角,最小角对最小角。对应角的对边为对应边, 对应边对的角为对应角。( 2)全等三角形的周长相等、面积相等。( 3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边 :三边对
2、应相等的两个三角形全等(可简写成“SSS”边角边 :两边和它们的夹角对应相等两个三角形全等(可简写成“SAS” 角边角 :两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”角角边 :两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”斜边方.直角法边指:斜引边和一条直角边对应相等的两个直角三角形全等(可简写成“HL” 4、证明两个证三明角形两全个等三的基角本形思全路:等的基本思路:找第三边SSS 可编辑资料 - - - 欢迎下载精品名师归纳总结( 1):已知两边 -(2) : 已知一边一角 -找夹角( SAS 找是否有直角 HL 已知一边和它的邻角已知一边和它的对角找这边
3、的另一个邻角ASA 找这个角的另一个边SAS找这边的对角AAS 找一角 AAS 已知角是直角,找一边HL 可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(3) : 已知两角 -练习找两角的夹边 ASA找夹边外的任意边AAS 可编辑资料 - - - 欢迎下载精品名师归纳总结二、角的平分线 :从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。可编辑资料 - - - 欢迎下载精品名师归纳总结三、学习全等三角形应留意以
4、下几个问题:( 1 要正确区分 “对应边 ”与 “对边 ”,“对应角 ”与“对角 ”的不同含义。( 2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上。( 3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不肯定全等。( 4)时刻留意图形中的隐含条件,如“公共角 ”、“公共边 ”、“对顶角 ”可编辑资料 - - - 欢迎下载精品名师归纳总结( 5)截长补短法证三角形全等。第十二章轴对称可编辑资料 - - - 欢迎下载精品名师归纳总结一、轴对称图形1. 把一个图形沿着一条直线折叠,假如直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对
5、称轴。这时我们也说这个图形关于这条直线(成轴)对称。2. 把一个图形沿着某一条直线折叠,假如它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴知对称识图回形和顾轴对:称的区分与联系3、轴对称图形和轴对称的区分与联系轴对称图形轴对称AAA图形BCCBBC1轴对称图形是指 一个1区分轴对称是指的位置关系 两个图形具 有特别外形的图形, 必需涉及只对 一个2对称轴 不一 定图形而言;只有一条2只有 一条 对称轴 .两个图形 ;假如把轴对称图形沿对称轴联系分成两部分, 那么这两个图形就关于这条直线成轴对称.假如把两个成轴对称的图形拼
6、在一起看成一个整体, 那么它就是一个轴对称图形.4. 轴对称与轴对称图形的性质 关于某直线对称的两个图形是全等形。 假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 假如两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。 两个图形关于某条直线成轴对称,假如它们的对应线段或延长线相交,那么交点在对称轴上。可编辑资料 - - - 欢迎下载精品名师归纳总结二、线段的垂直平分线1. 定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2. 性质:线段垂直平分线上
7、的点与这条线段的两个端点的距离相等3. 判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:1. 在平面直角坐标系中关于 x 轴对称的点横坐标相等,纵坐标互为相反数;关于 y 轴对称的点横坐标互为相反数,纵坐标相等 ;关于原点对称的点横坐标和纵坐标互为相反数。与 X 轴或 Y 轴平行的直线的两个点横(纵)坐标的关系。关于与直线 X=C或 Y=C对称的坐标点( x, y)关于 x 轴对称的点的坐标为 _ ( x, -y).点( x, y)关于 y 轴对称的点的坐标为 ( -x, y).2. 三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(
8、等腰三角形 学问点回忆1. 等腰三角形的性质 .等腰三角形的两个底角相等。 (等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。(三线合一) 懂得:已知等腰三角形的一线就可以推知另两线。2、等腰三角形的判定:假如一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 五、(等边三角形)学问点回忆1. 等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是 600 的等腰三角形是等边三角形。3. 在直角三角形中,假如一个锐角等于300,那么它所对的直角边等于斜边的一半。第十五章
9、整式乘除与因式分解一回忆学问点1、主要学问回忆:可编辑资料 - - - 欢迎下载精品名师归纳总结幂的运算性质:amn am na( m、n 为正整数)同底数幂相乘,底数不变,指数相加mna amn( m、n 为正整数)幂的乘方,底数不变,指数相乘可编辑资料 - - - 欢迎下载精品名师归纳总结naban bn( n 为正整数)可编辑资料 - - - 欢迎下载精品名师归纳总结积的乘方等于各因式乘方的积aman am n(a 0,m、n 都是正整数,且 m n) 同底数幂相除,底数不变,指数相减零指数幂的概念:a0 1( a 0)任何一个不等于零的数的零指数幂都等于l 负指数幂的概念:1可编辑资料
10、 - - - 欢迎下载精品名师归纳总结ap ap( a 0, p 是正整数)可编辑资料 - - - 欢迎下载精品名师归纳总结任何一个不等于零的数的p( p 是正整数)指数幂,等于这个数的p 指数幂的倒数可编辑资料 - - - 欢迎下载精品名师归纳总结pn也可表示为:mpmn( m0, n 0, p 为正整数)可编辑资料 - - - 欢迎下载精品名师归纳总结单项式的乘法法就:单项式相乘,把系数、同底数幂分别相乘,作为积的因式。对于只在一个单项式里含有的字母,就连同它的指数作为积的一个因式单项式与多项式的乘法法就:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加 多项式与多项
11、式的乘法法就:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加 单项式的除法法就:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,就连同它的指数作为商的一个因式多项式除以单项式的法就:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加3、因式分解:因式分解的定义把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解 把握其定义应留意以下几点:( 1)分解对象是多项式,分解结果必需是积的形式,且积的因式必需是整式,这三个要素缺一不行。( 2)因式分解必需是恒等变形。( 3)因式分解必需分解
12、到每个因式都不能分解为止 弄清因式分解与整式乘法的内在的关系因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式可编辑资料 - - - 欢迎下载精品名师归纳总结二、娴熟把握因式分解的常用方法1、提公因式法( 1)把握提公因式法的概念。( 2)提公因式法的关键是找出公因式,公因式的构成一般情形下有三部分:系数一各项系数的最大公约数。字母各项含有的相同字母。指数相同字母的最低次数。( 3)提公因式法的步骤:第一步是找出公因式。其次步是提取公因式并确定另一因式需留意的是, 提取完公因式后,另一个因式的项数与原多项式的项数一样,这一点可用来检验是否漏项( 4)留意
13、点:提取公因式后各因式应当是最简形式,即分解到“底”。假如多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系数是正的2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用。 常用的公式:平方差公式:a2 b 2 ( a b)( a b)完全平方公式:a2 2ab b 2( a b) 2a2 2abb 2( a b) 2可编辑资料 - - - 欢迎下载精品名师归纳总结第十六章分式1. 分式的定义:假如A 、B 表示两个整式,并且B 中含有字母,那么式子AA CA 叫做分式。BB C B可编辑资料 - - - 欢迎下载精品名师归纳总结分式有意义的条件是分母不为零,分式值为
14、零的条件分子为零且分母不为零AAC可编辑资料 - - - 欢迎下载精品名师归纳总结2. 分 式 的 基 本 性 质 : 分 式 的 分 子 与 分 母 同 乘 或 除 以 一 个 不 等 于 0的 整 式 , 分 式B的 值B不C变 。可编辑资料 - - - 欢迎下载精品名师归纳总结( C0 )3. 分式的通分和约分:关键先是分解因式4. 分式的运算:分式乘法法就:分式乘分式,用分子的积作为积的分子,分母的积作为分母。分式除法法就:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。acac ; acadad bdbdbdbcbcn可编辑资料 - - - 欢迎下载精品名师归纳总结分式乘方
15、法就:分式乘方要把分子、分母分别乘方。abab , acadbcadbccccbdbdbdbd分式的加减法就:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算 : 运算次序和以前一样。能用运算率简算的可用运算率简算。 a nabbn可编辑资料 - - - 欢迎下载精品名师归纳总结5. 任何一个不等于零的数的零次幂等于1, 即 a 01a0 。当 n 为正整数时,a n1( a0 an可编辑资料 - - - 欢迎下载精品名师归纳总结a6. 正整数指数幂运算性质也可以推广到整数指数幂m,n 是整数 可编辑资料 - - - 欢迎下载精品名师归
16、纳总结( 1)同底数的幂的乘法:a manm n 。可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)幂的乘方:( 3)积的乘方:am nabna mn ;anbn 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 4)同底数的幂的除法:a ma naa na m n a 0 。可编辑资料 - - - 欢迎下载精品名师归纳总结( 5)商的乘方: nbn 。 b 0b可编辑资料 - - - 欢迎下载精品名师归纳总结7. 分式方程:含分式,并且分母中含未知数的方程分式方程。可编辑资料 - - - 欢迎下载精品名师归纳总结解分式方程的过程,实
17、质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为,这样就产生了增根,因此分式方程肯定要验根。解分式方程的步骤 :1 能化简的先化简 2 方程两边同乘以最简公分母,化为整式方程。3 解整式方程。 4 验根增根应满意两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。分式方程检验方法:将整式方程的解带入最简公分母,假如最简公分母的值不为0,就整式方程的解是原分式方程的解。否就,这个解不是原分式方程的解。列方程应用题的步骤是什么?1审。 2 设。 3 列。 4 解。 5 答8. 科学记数法:把
18、一个数表示成用科学记数法表示肯定值大于用科学记数法表示肯定值小于面的一个 0a10 n 的形式(其中10 的 n 位整数时,其中1a10 , n 是整数)的记数方法叫做科学记数法10 的指数是 n1 的正小数时 ,其中 10 的指数是第一个非10 数字前面0 的个数 包括小数点前第十八章勾股定理1.勾股定理:假如直角三角形的两直角边长分别为a, b,斜边长为c,那么 a2b2=c2。2.勾股定理逆定理:假如三角形三边长a,b,c 满意 a2 b2=c2。,那么这个三角形是直角三角形。应用题有几种类型。基本公式是什么?基本上有五种:1行程问题:基本公式:路程=速度时间而行程问题中又分相遇问题、追
19、及问题2数字问题 在数字问题中要把握十进制数的表示法3工程问题 基本公式:工作量 =工时工效 4顺水逆水问题v顺水 =v 静水 +v 水v逆水=v 静水 -v 水可编辑资料 - - - 欢迎下载精品名师归纳总结3. 经过证明被确认正确的命题叫做定理。我们把题设、结论正好相反的两个命题叫做互逆命题。假如把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)4. 直角三角形的性质( 1)、直角三角形的两个锐角互余。可表示如下:C=90 A+ B=90( 2)、在直角三角形中, 30角所对的直角边等于斜边的一半。 A=30可编辑资料 - - - 欢迎下载精品名师归纳总结可表
20、示如下: C=90BC=1 AB2可编辑资料 - - - 欢迎下载精品名师归纳总结( 3)、直角三角形斜边上的中线等于斜边的一半 ACB=90可编辑资料 - - - 欢迎下载精品名师归纳总结可表示如下:D为 AB的中点5 、摄影定理CD= 12AB=BD=AD可编辑资料 - - - 欢迎下载精品名师归纳总结在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项可编辑资料 - - - 欢迎下载精品名师归纳总结 ACB=90CD AB2ACADCD 2ABBC 2ADBDBDAB可编辑资料 - - - 欢迎下载精品名师归纳总结6 、常用关系式
21、由三角形面积公式可得:ABCD=AC BC7 、直角三角形的判定1 、有一个角是直角的三角形是直角三角形。2 、假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。可编辑资料 - - - 欢迎下载精品名师归纳总结3 、勾股定理的逆定理:假如三角形的三边长a, b,c 有关系 a 2b 2三角形。8 、命题、定理、证明1、命题的概念判定一件事情的语句,叫做命题。懂得:命题的定义包括两层含义:( 1)命题必需是个完整的句子。( 2)这个句子必需对某件事情做出判定。2、命题的分类(按正确、错误与否分)真命题(正确的命题)c2 ,那么这个三角形是直角可编辑资料 - - - 欢迎下载精品名
22、师归纳总结命题假命题(错误的命题)可编辑资料 - - - 欢迎下载精品名师归纳总结所谓正确的命题就是:假如题设成立,那么结论肯定成立的命题。所谓错误的命题就是:假如题设成立,不能证明结论总是成立的命题。3、公理人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。4、定理用推理的方法判定为正确的命题叫做定理。5、证明判定一个命题的正确性的推理过程叫做证明。6、证明的一般步骤( 1)依据题意,画出图形。( 2)依据题设、结论、结合图形,写出已知、求证。( 3)经过分析,找出由已知推出求证的途径,写出证明过程。9 、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。( 1)三角形共有
23、三条中位线,并且它们又重新构成一个新的三角形。( 2)要会区分三角形中线与中位线。三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。三角形中位线定理的作用:位置关系:可以证明两条直线平行。 数量关系:可以证明线段的倍分关系。常用结论:任一个三角形都有三条中位线,由此有:结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结论 4:三角形一条中线和与它相交的中位线相互平分。结论 5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。可编辑资料 - - - 欢迎下载