《2016年普通高等学校招生全国统一考试(北京卷)理数.doc》由会员分享,可在线阅读,更多相关《2016年普通高等学校招生全国统一考试(北京卷)理数.doc(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2016年普通高等学校招生全国统一考试(北京卷)理数一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1(5分)(2016北京)已知集合A=x|x|2,B=1,0,1,2,3,则AB=()A0,1B0,1,2C1,0,1D1,0,1,22(5分)(2016北京)若x,y满足,则2x+y的最大值为()A0B3C4D53(5分)(2016北京)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A1B2C3D44(5分)(2016北京)设,是向量,则“|=|”是“|+|=|”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件
2、5(5分)(2016北京)已知x,yR,且xy0,则()A0Bsinxsiny0C()x()y0Dlnx+lny06(5分)(2016北京)某三棱锥的三视图如图所示,则该三棱锥的体积为()ABCD17(5分)(2016北京)将函数y=sin(2x)图象上的点P(,t)向左平移s(s0)个单位长度得到点P,若P位于函数y=sin2x的图象上,则()At=,s的最小值为Bt=,s的最小值为Ct=,s的最小值为Dt=,s的最小值为8(5分)(2016北京)袋中装有偶数个球,其中红球、黑球各占一半甲、乙、丙是三个空盒每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个放入乙盒,
3、否则就放入丙盒重复上述过程,直到袋中所有球都被放入盒中,则()A乙盒中黑球不多于丙盒中黑球B乙盒中红球与丙盒中黑球一样多C乙盒中红球不多于丙盒中红球D乙盒中黑球与丙盒中红球一样多二、填空题共6小题,每小题5分,共30分9(5分)(2016北京)设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=10(5分)(2016北京)在(12x)6的展开式中,x2的系数为(用数字作答)11(5分)(2016北京)在极坐标系中,直线cossin1=0与圆=2cos交于A,B两点,则|AB|=12(5分)(2016北京)已知an为等差数列,Sn为其前n项和若a1=6,a3+a5=0,则S6=
4、13(5分)(2016北京)双曲线=1(a0,b0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点若正方形OABC的边长为2,则a=14(5分)(2016北京)设函数f(x)=若a=0,则f(x)的最大值为;若f(x)无最大值,则实数a的取值范围是三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程15(13分)(2016北京)在ABC中,a2+c2=b2+ac()求B的大小;()求cosA+cosC的最大值16(13分)(2016北京)A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:
5、小时):A班6 6.5 7 7.5 8B班6 7 8 9 10 11 12C班3 4.5 6 7.5 9 10.5 12 13.5()试估计C班的学生人数;()从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;()再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为1,表格中数据的平均数记为0,试判断0和1的大小(结论不要求证明)17(14分)(2016北京)如图,在四棱锥PABCD中,平面PAD平
6、面ABCD,PAPD,PA=PD,ABAD,AB=1,AD=2,AC=CD=()求证:PD平面PAB;()求直线PB与平面PCD所成角的正弦值;()在棱PA上是否存在点M,使得BM平面PCD?若存在,求的值,若不存在,说明理由18(13分)(2016北京)设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,()求a,b的值;()求f(x)的单调区间19(14分)(2016北京)已知椭圆C:+=1(a0,b0)的离心率为,A(a,0),B(0,b),O(0,0),OAB的面积为1()求椭圆C的方程;()设P是椭圆C上一点,直线PA与y轴交于点M,直
7、线PB与x轴交于点N求证:|AN|BM|为定值20(13分)(2016北京)设数列A:a1,a2,aN (N2)如果对小于n(2nN)的每个正整数k都有akan,则称n是数列A的一个“G时刻”,记G(A)是数列A的所有“G时刻”组成的集合()对数列A:2,2,1,1,3,写出G(A)的所有元素;()证明:若数列A中存在an使得ana1,则G(A);()证明:若数列A满足anan11(n=2,3,N),则G(A)的元素个数不小于aNa12016年普通高等学校招生全国统一考试(北京卷)理数参考答案与试题解析一、选择题1C【分析】先求出集合A和B,由此利用交集的定义能求出AB【解答】解:集合A=x|
8、x|2=x|2x2,B=1,0,1,2,3,AB=1,0,1故选:C2C【分析】作出不等式组对应的平面区域,目标函数的几何意义是直线的纵截距,利用数形结合即可求z的取值范围【解答】解:作出不等式组对应的平面区域如图:(阴影部分)设z=2x+y得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点A时,直线y=2x+z的截距最大,此时z最大由,解得,即A(1,2),代入目标函数z=2x+y得z=12+2=4即目标函数z=2x+y的最大值为4故选:C3B【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,可得答案【解答】解:输入的a
9、值为1,则b=1,第一次执行循环体后,a=,不满足退出循环的条件,k=1;第二次执行循环体后,a=2,不满足退出循环的条件,k=2;第三次执行循环体后,a=1,满足退出循环的条件,故输出的k值为2,故选:B4D【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案【解答】解:若“|=|”,则以,为邻边的平行四边形是菱形;若“|+|=|”,则以,为邻边的平行四边形是矩形;故“|=|”是“|+|=|”的既不充分也不必要条件;故选:D5C【分析】x,yR,且xy0,可得:,sinx与siny的大小关系不确定,lnx+lny与0的大小关系不确定,即可判断出结论【解答】解:x,yR,且xy0,则
10、,sinx与siny的大小关系不确定,即0,lnx+lny与0的大小关系不确定故选:C6A【分析】由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,进而可得答案【解答】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=11=,高为1,故棱锥的体积V=,故选:A7A【分析】将x=代入得:t=,进而求出平移后P的坐标,进而得到s的最小值【解答】解:将x=代入得:t=sin=,将函数y=sin(2x)图象上的点P向左平移s个单位,得到P(s,)点,若P位于函数y=sin2x的图象上,则sin(2s)=cos2s=,则2s=+2k,kZ,则s=+k,kZ,由s
11、0得:当k=0时,s的最小值为,故选:A8B【分析】分析理解题意:乙中放红球,则甲中也肯定是放红球;往丙中放球的前提是放入甲中的不是红球,据此可以从乙中的红球个数为切入点进行分析【解答】解:取两个球共有4种情况:红+红,则乙盒中红球数加1个;黑+黑,则丙盒中黑球数加1个;红+黑(红球放入甲盒中),则乙盒中黑球数加1个;黑+红(黑球放入甲盒中),则丙盒中红球数加1个设一共有球2a个,则a个红球,a个黑球,甲中球的总个数为a,其中红球x个,黑球y个,x+y=a则乙中有x个球,其中k个红球,j个黑球,k+j=x;丙中有y个球,其中l个红球,i个黑球,i+l=y;黑球总数a=y+i+j,又x+y=a,
12、故x=i+j由于x=k+j,所以可得i=k,即乙中的红球等于丙中的黑球故选B二、填空题91【分析】(1+i)(a+i)=a1+(a+1)i,则a+1=0,解得答案【解答】解:(1+i)(a+i)=a1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=1,故答案为:11060 【分析】利用二项式定理展开式的通项公式即可得出【解答】解:(12x)6的展开式中,通项公式Tr+1=(2x)r=(2)rxr,令r=2,则x2的系数=60故答案为:60112【分析】把圆与直线的极坐标方程化为直角坐标方程,利用圆心C在直线上可得|AB|【解答】解:直线cossi
13、n1=0化为y直线xy1=0圆=2cos化为2=2cos,x2+y2=2x,配方为(x1)2+y2=1,可得圆心C(1,0),半径r=1则圆心C在直线上,|AB|=2故答案为:2126【分析】由已知条件利用等差数列的性质求出公差,由此利用等差数列的前n项和公式能求出S6【解答】解:an为等差数列,Sn为其前n项和a1=6,a3+a5=0,a1+2d+a1+4d=0,12+6d=0,解得d=2,S6=3630=6故答案为:6132【分析】根据双曲线渐近线在正方形的两个边,得到双曲线的渐近线互相垂直,即双曲线是等轴双曲线,结合等轴双曲线的性质进行求解即可【解答】解:双曲线的渐近线为正方形OABC的
14、边OA,OC所在的直线,渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=x,即a=b,正方形OABC的边长为2,OB=2,即c=2,则a2+b2=c2=8,即2a2=8,则a2=4,a=2,故答案为:2142;(,1)【分析】将a=0代入,求出函数的导数,分析函数的单调性,可得当x=1时,f(x)的最大值为2;若f(x)无最大值,则,或,解得答案【解答】解:若a=0,则f(x)=,则f(x)=,当x1时,f(x)0,此时函数为增函数,当x1时,f(x)0,此时函数为减函数,故当x=1时,f(x)的最大值为2;f(x)=,令f(x)=0,则x=1,若f(x)无最大值,则,或,解得:a(,
15、1)故答案为:2,(,1)三、解答题15【分析】()根据已知和余弦定理,可得cosB=,进而得到答案;()由(I)得:C=A,结合正弦型函数的图象和性质,可得cosA+cosC的最大值【解答】解:()在ABC中,a2+c2=b2+aca2+c2b2=accosB=,B=()由(I)得:C=A,cosA+cosC=cosA+cos(A)=cosAcosA+sinA=cosA+sinA=sin(A+)A(0,),A+(,),故当A+=时,sin(A+)取最大值1,即cosA+cosC的最大值为116【分析】(I)由已知先计算出抽样比,进而可估计C班的学生人数;()根据古典概型概率计算公式,可求出该
16、周甲的锻炼时间比乙的锻炼时间长的概率;()根据平均数的定义,可判断出01【解答】解:(I)由题意得:三个班共抽取20个学生,其中C班抽取8个,故抽样比K=,故C班有学生8=40人,()从从A班和C班抽出的学生中,各随机选取一个人,共有58=40种情况,而且这些情况是等可能发生的,当甲锻炼时间为6时,甲的锻炼时间比乙的锻炼时间长有2种情况;当甲锻炼时间为6.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为7.5时,甲的锻炼时间比乙的锻炼时间长有3种情况;当甲锻炼时间为8时,甲的锻炼时间比乙的锻炼时间长有4种情况;故周甲的锻炼
17、时间比乙的锻炼时间长的概率P=;()0117【分析】()由已知结合面面垂直的性质可得AB平面PAD,进一步得到ABPD,再由PDPA,由线面垂直的判定得到PD平面PAB;()取AD中点为O,连接CO,PO,由已知可得COAD,POAD以O为坐标原点,建立空间直角坐标系,求得P(0,0,1),B(1,1,0),D(0,1,0),C(2,0,0),进一步求出向量的坐标,再求出平面PCD的法向量,设PB与平面PCD的夹角为,由求得直线PB与平面PCD所成角的正弦值;()假设存在M点使得BM平面PCD,设,M(0,y1,z1),由可得M(0,1,),由BM平面PCD,可得,由此列式求得当时,M点即为所
18、求【解答】()证明:平面PAD平面ABCD,且平面PAD平面ABCD=AD,且ABAD,AB平面ABCD,AB平面PAD,PD平面PAD,ABPD,又PDPA,且PAAB=A,PD平面PAB;()解:取AD中点为O,连接CO,PO,CD=AC=,COAD,又PA=PD,POAD以O为坐标原点,建立空间直角坐标系如图:则P(0,0,1),B(1,1,0),D(0,1,0),C(2,0,0),则,设为平面PCD的法向量,则由,得,则设PB与平面PCD的夹角为,则=;()解:假设存在M点使得BM平面PCD,设,M(0,y1,z1),由()知,A(0,1,0),P(0,0,1),B(1,1,0),则有
19、,可得M(0,1,),BM平面PCD,为平面PCD的法向量,即,解得综上,存在点M,即当时,M点即为所求18【分析】()求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;()求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间【解答】解:()y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,当x=2时,y=2(e1)+4=2e+2,即f(2)=2e+2,同时f(2)=e1,f(x)=xeax+bx,f(x)=eaxxeax+b,则,即a=2,b=e;()a=2,b=e;f(x)=xe2x+ex,f(x)=e2xxe2x
20、+e=(1x)e2x+e,f(x)=e2x(1x)e2x=(x2)e2x,由f(x)0得x2,由f(x)0得x2,即当x=2时,f(x)取得极小值f(2)=(12)e22+e=e10,f(x)0恒成立,即函数f(x)是增函数,即f(x)的单调区间是(,+)19【分析】()运用椭圆的离心率公式和三角形的面积公式,结合a,b,c的关系,解方程可得a=2,b=1,进而得到椭圆方程;()方法一、设椭圆上点P(x0,y0),可得x02+4y02=4,求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,化简整理,即可得到|AN|BM|为定值4方法二、设P(2co
21、s,sin),(02),求出直线PA的方程,令x=0,求得y,|BM|;求出直线PB的方程,令y=0,可得x,|AN|,运用同角的平方关系,化简整理,即可得到|AN|BM|为定值4【解答】解:()由题意可得e=,又OAB的面积为1,可得ab=1,且a2b2=c2,解得a=2,b=1,c=,可得椭圆C的方程为+y2=1;()证法一:设椭圆上点P(x0,y0),可得x02+4y02=4,直线PA:y=(x2),令x=0,可得y=,则|BM|=|1+|;直线PB:y=x+1,令y=0,可得x=,则|AN|=|2+|可得|AN|BM|=|2+|1+|=|=|=|=4,即有|AN|BM|为定值4证法二:
22、设P(2cos,sin),(02),直线PA:y=(x2),令x=0,可得y=,则|BM|=|;直线PB:y=x+1,令y=0,可得x=,则|AN|=|即有|AN|BM|=|=2|=2|=4则|AN|BM|为定值420【分析】()结合“G时刻”的定义进行分析;()可以采用假设法和递推法进行分析;()可以采用假设法和列举法进行分析【解答】解:()根据题干可得,a1=2,a2=2,a3=1,a4=1,a5=3,a1a2满足条件,2满足条件,a2a3不满足条件,3不满足条件,a2a4不满足条件,4不满足条件,a1,a2,a3,a4,均小于a5,因此5满足条件,因此G(A)=2,5()因为存在ana1,设数列A中第一个大于a1的项为ak,则aka1ai,其中2ik1,所以akG(A),G(A);()设A数列的所有“G时刻”为i1i2Lik,对于第一个“G时刻”i1,有a1ai(i=2,3,L,i11),则ai1对于第二个“G时刻”i1,有ai(i=2,3,L,i11),则1类似的1,1于是,k()+()+L+()+(a1)=a1对于aN,若NG(A),则=aN若NG(A),则aN,否则由(2)知,L,aN,中存在“G时刻”与只有k个“G时刻”矛盾从而ka1aNa1第15页(共15页)