《2022年第章fluent基本物理模型 .pdf》由会员分享,可在线阅读,更多相关《2022年第章fluent基本物理模型 .pdf(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第八章 基本物理模型本章介绍了FLUENT 所提供的基本物理模型以及相关的定义和使用。基本物理模型概述FLUENT提供了从不可压到可压、层流、湍流等很大范围模拟能力。在FLUENT中,输运现象的数学模型与所模拟的几何图形的复杂情况是结合在一起的。FLUENT应用的例子包括层流非牛顿流的模拟,涡轮机和汽车引擎的湍流热传导,锅炉内煤炭粉碎机的燃烧,可压射流,空气动力外流,以及固体火箭发动机的可压化学反应流。为了与工业应用相结合,FLUENT提供了很多有用的功能。如多孔介质,块参数(风扇和热交换),周期性流动和热传导,涡流,以及移动坐标系模型。移动参考系模型可以模拟单一或者多个参考系。FLUENT还
2、提供了时间精度滑动网格方法以及计算时间平均流动流场的混合平面模型,滑动网格方法在模拟涡轮机多重过程中很有用。FLUENT中另一个很有用的模型是离散相模型,这个模型何以用于分析喷雾和粒子流。,多项流模型可以用于预测射流的破散以及大坝塌陷之后流体的运动,气穴现象,沉淀和分离。湍流模型是FLUENT中很重要的一部分,湍流会影响到其它的物理现象如浮力和可压缩性。湍流模型提供了很大的应用范围,而不需要对特定的应用做出适当的调节,而且它涵括了其它物理现象的影响,如浮力和可压缩性。通过使用扩展壁面函数和区域模型,它可以对近壁面的精度问题有很好的考虑。各种热传导模式可以被模拟,其中包括具有或不具有其它复杂性如
3、变化热传导的,多孔介质的自然的、受迫的以及混合的对流。模拟相应介质的辐射模型及子模型的设定通常可以将燃烧的复杂性考虑进来。FLUENT一个最强大的功能就是它可以通过耗散模型或者和概率密度函数模型来模拟燃烧现象。对于燃烧应用十分有用的其它模型也可以在FLUENT 中使用,其中包括碳和液滴的燃烧以及污染形成模型。连续性和动量方程对于所有的流动,FLUENT都是解质量和动量守恒方程。对于包括热传导或可压性的流动,需要解能量守恒的附加方程。对于包括组分混合和反应的流动,需要解组分守恒方程或者使用PDF 模型来解混合分数的守恒方程以及其方差。当流动是湍流时,还要解附加的输运方程。本节所介绍的是层流流动的
4、守恒方程(在惯性(无加速度)的坐标系中)。后面几节将会讨论热传导、湍流模拟以及组分输运的守恒方程。关于旋转坐标系中的方程将在移动区域的流动中介绍。欧拉方程用于解决无粘流动,将在无粘流动一节中介绍质量守恒方程质量守恒方程又称连续性方程:该方程是质量守恒方程的一般形式,它适用于可压流动和不可压流动。源项S_m 是从分散的二级相中加入到连续相的质量(比方说由于液滴的蒸发),源项也可以是任何的自定义源项。二维轴对称问题的连续性方程为:具体各个变量的意义可以参阅相关的流体力学书籍,其中有具体而详细地介绍。动量守恒方程在惯性(非加速)坐标系中i 方向上的动量守恒方程为8 :精选学习资料 - - - - -
5、 - - - - 名师归纳总结 - - - - - - -第 1 页,共 25 页其中 p 是静压, t_ij 是下面将会介绍的应力张量,r g_i 和 F_i 分别为i 方向上的重力体积力和外部体积力(如离散相相互作用产生的升力)。F_i 包含了其它的模型相关源项,如多孔介质和自定义源项。应力张量由下式给出:上式的物理意义可以参阅流体力学教科书,其中会讲得很清楚。对于二维轴对称几何外形,轴向和径向的动量守恒方程分别为:以及其中:w 是漩涡速度(具体可以参阅模拟轴对称涡流中漩涡和旋转流动的信息)热传导FLUENT允许在你模型的流体和/或固体区域包含热传导。本节中所介绍的物理模型和相关输入可以处
6、理从流体内热混合到复合固体的热传导等问题。自然对流问题会在浮力驱动流动一节介绍,自然对流与辐射模型将在辐射模拟一节介绍FLUENT可以预测周期性几何外形的热传导,如密集的热交换器,它只需要考虑单个的周期性模块进行分析。关于这样流动的处理,需要使用周期性边界条件,具体可以参阅周期性流动和热传导一节。在两个分离的流动区域解决热传导问题如果所模拟的流动包括了两个流体区域,其中被固体区域或者壁面分离开,如下图所示,你需要更细心的定义问题。主要需要指定:两个流体区域都不可以使用质量出口边界条件每一个流体区域可以选择不同的流体材料。(然而对于组分计算,你只能在整个区域选择唯一一种混合材料)Figure 1
7、:典型的逆流热交换,在两个流体区域包括了热传导理论能量方程FLUENT 所解的能量方程的形式为其中 k_eff 是有效热传导系数(k + k_t, 其中 k_t 是湍流热传导系数,根据所使用的湍流模型来定义), J_j是组分j的扩散流量。上面方程右手边的前三项分别描述了热传导、组分扩散和粘性耗散带来的能量输运。S_h 包括了化学反应热以及其它用户定义的体积热源项。在上面的方程中:其中,理想气体的显焓定义为:对于可压流为:在方程 5 和 7 中, m_j 是组分 j的质量分数,而且精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 25 页其
8、中 T_ref 为 298.15 K. PDF 模型的能量方程当激活非绝热PDF 燃烧模型时,FLUENT 解总焓形式的能量方程:假定Lewis 数为1,右手边第一项表示传导和组分扩散项。非守恒形式的粘性扩散项的贡献由第二项描述。总焓H 定义为:其中 m_j为组分 j的质量分数,而且是在参考温度T_ref,j 下组分 j 的生成焓包括压力作用和动能项能量方程中的方程1 包含了不可压流动中常常忽略的压力作用和动能项。因此,在默认的情况下,分离解算器在解不可压流动时不考虑压力作用和动能项。如果你希望考虑这些作用,可以使用define/models/energy?文本命令将所需的项激活。模拟可压流或
9、者使用耦合解算器时,压力作用和动能项总是压考虑的。包括粘性耗散项能量方程中的方程1 和 PDF 模型的能量方程中的方程1 包括了粘性耗散项,该项所描述的是粘性剪切所产生的热能。使用分离解算器时,FLUENT默认的能量方程不包括它(因为粘性热可以忽略)。当Brinkman 数 Br 接近或者大于一,粘性热将会很重要。其中:D T 为系统温度的差分。你需要考虑粘性耗散项并且使用分离解算器,你需要在粘性模型面板激活粘性热项。对于可压流动一般有Br 1。但是需要注意的是,当使用分离解算器时,如果你定义了可压流动模型, FLUENT 并不自动激活粘性耗散项。当使用耦合解算器时,所解的能量方程总会包含粘性
10、耗散项。包括组分扩散项能量方程一节中的方程1 和 PDF 模型的能量方程一节中的方程1 包括了由于组分扩散而导致的焓的输运的影响。当使用分离解算器时,在默认情况下,会包含在能量方程一节的方程 1 中。如果你不想包括它,你可以在组分模型面板中关闭扩散能量源项的选项。当使用非绝热PDF 燃烧模型时,该项并不是显式的出现在能量方程中,因为对于PDF模型的能量方程一节中的方程1 来说,该方程右手边的第一项已经包含了它。当使用耦合解算器时,该项总是包含在能量方程中。由于化学反应产生的能量源项能量方程一节中的方程1 的能量源项S_h 包括了由于化学反应而产生的能量源项:其中 ho_j是组分 j的生成焓,
11、R_j是组分 j的体积生成速度。非绝热PDF 燃烧模型的能量方程中,焓的定义已经包括了能量的生成(见PDF 模型的能量方程一节中的方程5,所以能量的反应源项不包括在S_h 中。 . 由于辐射产生的能量源项当使用某一辐射模型时,能量方程一节中的方程1 和 PDF 模型的能量方程一节中的方程 1 的 S_h 也包括了辐射源项。详情参阅辐射模型一节。相间的能量源项精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 25 页需要注意的是,能量源项S_h 还包括连续和离散相之间的热传导。在后面的离散与连续相耦合一节将会详细讨论。壁面处热传导的边界条件
12、壁面处热传导边界条件在标准壁面函数一节中讨论。固体区域的能量方程FLUENT 所用的固体区域的能量输运方程的形式为:其中 r =密度h = 显焓( integral_T_refT c_p dT )k = 传导系数T = 温度q(dot) = 体积热源方程1 左手边的第二项体现了由于固体的平移和旋转而导致的能量对流热传导。速度场 u_i 由指定固体区域的运动计算出来(见固体条件一节)。方程1 右手边的项分别是固体内部热传导流量和体积热源的热流量。固体的各向异性热传导当使用分离解算器时,FLUENT允许你制定固体材料的各向异性热传导系数。固体的各向异性传导项形式为:其中k_ij 是热传导系数矩阵。
13、关于固体材料的各向异性热传导系数的制定可以参阅固体的各向异性热传导系数一节。入口处的扩散入口处能量的净输入既包括对流部分也包括扩散部分。对流部分由你所指定的入口温度确定。扩散部分依赖于计算出温度场的梯度。因此扩散部分(相应的净入口输运)不是提前指定的。在某些情况下,你可能希望指定入口处的能量净输运而不是入口温度。如果你使用分离解算器,你可以通过取消入口能量扩散来实现这一目标。在默认的情况下,FLUENT在入 口 处 会 考 虑 能 量 的 扩 散 流 量 。 要 关 闭 入 口 扩 散 , 可 以 使 用 文 本 命 令 :define/models/energy?。如果你使用耦合解算器,入口
14、扩散选项无法关闭。热传导所需的用户输入当 FLUENT模型包含了热传导,你需要激活相关的模型,提供热边界条件,并输入控制热传导和 /或随温度变化的材料属性。本节将会介绍这些输入。下面将会介绍热传导问题的设定步骤。(注意:本步骤只包括热传导模型设定的必须步骤,你还要设定其它的模型,边界条件等。)1.要 激 活 热 传 导 的 计 算 , 请 在 能 量 面 板 中 打 开 激 活 能 量 方 程 选 项 。 菜 单 :Define/Models ?Energy. 。Figure 1: 能量面板2. (可选,只用于分离解算器)如果你模拟粘性流动,而且希望在能量方程中包括粘性热传导项,请在粘性模型面
15、板中打开粘性热传导项。如包含粘性耗散一节中所述,当使用分离解算器时,FLUENT在默认的情况下会忽略能量方程中的粘性热传导项(如果使用耦合解散器,则会一直包含粘性热传导项。当流体中的剪切应力较大(如:润滑问题)和 /或速度较高、可压流动,就应该激活粘性耗散项(见包含粘性耗散项一节中精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 25 页的方程 1)。菜单Define/Models/Viscous. 3. 在流动入口、出口和壁面处定义热边界条件。菜单:Define/Boundary Conditions. 。在流动的出入口你需要设定温度,
16、在壁面处你可能需要设定下面的某一热条件:指定热流量指定温度对流热传导外部辐射外部辐射和外部对流热传导的结合定义壁面处热边界条件一节详细地介绍了控制热边界条件的模型输入。入口处默认的热边界条件为指定的温度300 K;壁面处默认的条件为零热流量(绝热)。关于边界条件的输入请参阅边界条件一章。4. 定义适合于热传导的材料属性。菜单:Define/Materials. 如物理属性一节所述,必须定义热容和热传导系数,而且你可以指定很多属性为温度的函数。温度的上下限出于稳定性考虑,FLUENT包括了预测温度范围的限制。设定温度上下限的目的是为了提高计算的稳定性,从物理意义上说,温度应该处于已知极限的范围之
17、内。有时候方程中间解会导致温度超出这些极限,此时就无法很好的定义属性。温度极限保证你的问题的温度在期待的范围之内。如果计算的温度超出最大极限,那么所存储的温度就会固定在最大值处。默认的温度上限是5000 K。如果计算的温度低于最小极限,那么存储的温度就会固定在最小值处。默认的温度下限是1 K。如果你所预期的温度超过5000 K ,你应该使用解限制面板来增加最大温度。菜单:Solve/Controls/Limits. 。热传导的解过程虽然使用Fluent 默认的解参数可以成功的解决很多简单的热传导问题,你还是可以使用本节所提供的指导方针来加速收敛速度和解的稳定性。能量方程的亚松驰使用分离解算器时
18、,FLUENT可以使用你在解控制面板所定义的亚松驰参数来处理亚松 驰 能 量 方 程 , 具 体 可 以 参 阅 设 定 松 弛 因 子 一 节 所 介 绍 的 内 容 。 菜 单 :Solve/Controls/Solution. 。如果使用非绝热PDF 模型,你需要像通常一样设定能量亚松弛因子,但是你也可以设定温度的亚松弛因子,其用法和解焓方程时温度的亚松驰一节所介绍的一样。FLUENT不会管所解能量方程是温度还是焓形式,它都会设定默认的亚松弛因子为1.0。在能量场影响流体流动(通过温度相关属性或者焓)的问题中,你应该是用较小的亚松弛因子,一般在0.8 到1.0 之间。当流场和温度场解耦时
19、(没有温度相关属性或者浮力),你可以保留松弛因子的默认值1.0。解焓方程时温度的亚松驰当解焓形式的能量方程时(即当你使用非绝热PDF 燃烧模型时),FLUENT 也对温度进行亚松驰,也就是说,只是用焓(亚松驰)变化对应的温度变化的某一分数来更新温度场。当你希望焓场变化较快时,二层的亚松驰很有用,只是温度响应比较之后,相应的温度对流场的影响也会滞后。FLUENT 对于温度的亚松驰默认设定为1.0,此设定使用解控制面板来实现。屏蔽组分扩散项如果使用分离解算器来解决组分输运,而且遇到了收敛困难,你应该考虑在组分模型精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - -
20、 -第 5 页,共 25 页面板中关闭扩散能量源项。菜单:Define/Models/Species. 。当改选项关闭时,FLUENT会忽略能量方程的组分扩散影响。注意:当使用耦合解算器时组分扩散影响总会被考虑到的。步进解最为有效的预测热传导策略是先计算等温流动然后加入能量方程的计算。步骤稍有不同,主要取决于流动和热传导是否耦合。如果流动和热传导是解耦的(没有温度相关属性或浮力),你可以首先解等温流动(关闭能量方程)来产生收敛的流场解,然后单独解能量输运方程。注意:因为耦合解算器总是一起解流动和能量方程,所以单独解能量方程只应用于分离解算器。你可以在解控制面板中的方程列表中取消能量选项来临时关
21、闭流动方程或者能量方程(请参阅步进解一节)。菜单:Solve/Controls/Solution. 。如果流动和热传导是耦合的(也就是模型中包括温度相关属性或浮力),你可以在打开能量方程之前首先解流动方程。一旦你有了收敛的流场解,你就可以打开能量选项然后同时解流动和能量方程完成热传导的模拟。热传导的报告FLUENT为热传导模拟提供了附加的报告选项。你可以生成图形或者报告下面的变量或函数:静温总温焓相对总温壁面温度(内部表面)壁面温度(外部表面)总焓总焓误差熵总能量内能表面热流量表面热传导系数表面努塞尔(Nusselt)数表面斯坦顿(Stanton)数上面所示的前11 个变量包含在后处理面板中的
22、变量选择下拉列表的温度类别中,剩下的变量在壁面流量类别中。关于它们的定义可以参阅流场函数定义一节。在报告和显示中焓与能量的定义焓与能量报告值的定义是不同的,它取决于流动可压与否。完全的定义请参阅流场变量及其定义的列表。报告通过边界的热传导你可以使用流量报告面板来计算通过每一个边界的热传导或者将通过所有边界的热流量加起来来检查热平衡。菜单:Report/Fluxes. 。推荐检查热平衡以确认你的解是收敛的。关于流量报告的生成请参阅通过边界的流量一节。报告通过表面的热传导精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 25 页你可以使用曲面
23、积分面板(在曲面积分一节介绍)来计算通过任何边界的热传导或者计算通过曲面的热传导,这个曲面可以在显示和报告曲面数据一节中介绍的方法来创建。菜单: Report/Surface Integrals.。要报告焓的流速在曲面积分面板选择流动速度选项,选择焓(在温度类别中)作为流场变量,然后选择需要积分的一个或多个曲面。报告平均热传导系数曲 面积 分面 板还 可以报告在曲 面上 的平 均热传导系数h, 菜单 : Report/Surface Integrals.。在曲面积分面板中选择平均选项,选择曲面热传导系数(在壁面流量类别中)作为流场变量然后点击相应的曲面。浮力驱动流动和自然对流当加热流体,而且流
24、体密度随温度变化是,流体会由于重力原因的而导致密度的变化。这种流动现象被称为自然对流(或者混合对流),Fluent 可以模拟这种流动。理论可以用 Grashof 数 Reynolds 雷诺数的比值来度量浮力在混合对流中的作用:当这个数接近或者超过一,你应该考虑浮力对于流动的贡献。反之,你就可以忽略浮力的影响。在纯粹的自然对流中,浮力诱导流动由瑞利数(Rayleigh)度量:其中热膨胀系数为:热扩散系数为:Rayleigh 数小于108 表明浮力诱导为层流流动,当瑞利数在108 到 1010 之间就开始过渡到湍流了。Boussinesq 模型对于很多自然对流流动,你可以用Boussinesq 模
25、型来得到更好的收敛速度,它要比设定密度为温度的函数来解决问题收敛得快。除了动量方程的浮力项之外,该模型在所有解决的方程中将密度看成常数。动量方程为:其中r_0 是流动的常数密度,T_0 是操作温度,b 是热扩散系数。上面的方程是通过Boussinesq 近似等于r_0 (1 - b D T)来消除浮力项中的r 得到的。只要真实密度变化很小,该近似是很精确的. 使用 Boussinesq模型的时机在封闭区域使用Boussinesq 模型来计算时间相关自然对流是很必要的。假如温度变化很小,该模型也可以用于定常问题。Boussinesq 模型不能用于组分,燃烧和反应流动的计算。浮力驱动流动的用户输入
26、在混合或自然对流中,你必须提供下面的输入来考虑浮力问题:1.在能量面板中打开能量方程选项。菜单:Define/Models/Energy. 。2. 在操作条件面板(下图)中打开重力选项,并在每一个方向上输入相应的重力加速度精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 25 页数值。菜单:Define/Operating Conditions Figure 1: 操作条件面板注意, FLUENT 中默认的重力加速度为零3. 如果使用不可压理想气体定律,要在操作条件面板中检查操作压力的数值(非零值)。4. 下面的选项取决于你是否使用Bou
27、ssinesq近似:如果不使用Boussinesq模型,输入如下:1. 必要的话在操作条件面板中激活操作密度选项,然后指定操作密度,详细设置可以参阅定义操作密度一节。2. 定义流体密度为温度的函数,具体可以参阅使用温度相关函数和密度定义属性一节。菜单: Define/Materials. 。如果使用 Boussinesq 模型,输入如下:1. 在操作条件面板中指定操作温度(Boussinesq 模型一节中方程1 的 T_0)2. 选择 Boussines方法来计算在使用材料面板中的密度(具体可以参阅使用温度相关函数和密度定义属性一节)。3. 还是在材料面板中,设定热扩散系数并指定常数密度。注意
28、:如果模型包括多种材料,对于每一个材料你都可以选择是否使用Boussinesq 模型。因此你可以对某些材料使用Boussinesq 模型其它的可以不使用。关于每一个材料的设定步骤都和上面所介绍的一样。5. 在压力入口和出口边界处的你所输入的边界压力是重新定义的压力,该压力由操作密度的定义一节中的方程3 给出。一般说来,如果没有外部强加的压力梯度,FLUENT模 型 在 入 口 和 出 口 边 界 处 的 压 力p 应 该 是 相 等 的 。 菜 单 : Define/Boundary Conditions.。6. 在解控制面板中,选择加权的体积力或者二阶方法作为压力的离散方法。菜单:Solve
29、/Controls/Solution. 。你需要在近壁面增加单元以解决边界层问题。如果你使用四边形或六面体网格并使用分离解算器,推荐选择PRESTO! 作为压力的离散方法。也可以参阅热传导计算设定所需的用户输入。操作密度的定义当不使用 Boussinesq 近似时,操作密度r_0 在动量方程中出现在体积力一项中:该种形式的体积力项遵从FLUE T 中压力的重定义:这样,静止流体可以保证静压平衡变成:因此,在所有的浮力驱动流动中,参考密度的定义都是很重要的。在默认的情况下,FLUENT会通过对所有单元取平均来计算操作密度。在某些算例中如果你明确指定操作密度而不是让解算器来计算密度,你可能会得到更
30、好的结果。比方说,如果你用压力边界条件解自然对流问题,知道你所指定的压力是方程中的p_s是很重要的。即使你知道真实压力p_s,你还是需要知道操作密度r_0,以便于从p_s 确定p_s。因此,你应该明确定义操作密度而不使用计算的平均值。但无论如何你所指定的密精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 25 页度都应该是对平均值的描述。在某些情况下,指定操作密度会提高解的收敛性而不会改善实际的结果。对于这种情况,使用近似bulk 密度值作为操作密度,并保证你所选的值对于区域的特征温度是合适的。注意:如果你使用Boussinesq 近似,
31、就不会使用操作密度了,所以你也不必指定它。浮力驱动流动的解策略对于高瑞利数流动,你需要考虑下面的解决方针。除此之外,在解决其它热传导问题的处理过程中所介绍的指导原则也可以用于浮力驱动流动。但是,需要注意的是对于高瑞利数的某些层流流动是没有定常解存在的。解决高瑞利( Rayleigh)数流动的方针对于高瑞利数流动(Ra 108),为了得到最好的结果你应该遵循下面所介绍的某一处理程序:第一个程序使用定常状态方法:1. 开始解决时使用较低的瑞利数(如:107),然后使用一阶格式运行直到收敛。2. 改变有效瑞利数,改变重力加速度的数值(如:从改为来使瑞利数减少两个量级)3. 使用上面的结果作为高瑞利数
32、流动的初始猜测,然后用一阶格式开始高瑞利数流动的计算。4. 用一阶格式获得解之后,你可以采用高阶格式继续计算。第二个程序使用时间相关方法来获取定常解62:1. 使用相同或较低瑞利数时得到的定常状态解开始计算。2. 估计时间常数为14:其中 L 和 U 分别是长度和速度。使用时间步长D t:如果使用更大的时间步长D t 可能会导致发散。mp 3. 当频率 f t = 0.05-0.09 的振动衰减之后,就达到了定常状态。注意,t 是方程中估计的时间常数,是单位为的振动频率。一般说来,要达到定常状态一般要进行个时间步。注意:除非使用Boussinesq 近似,否则非定常方法不能用于封闭区域。它总是
33、用于具有入口和出口的区域。浮力驱动流动的后处理浮力驱动流动的后处理报告和其它热传导计算的报告一样。详情请参阅热传导的报告一节周期性流动和热传导周期流是指流动和热的解具有周期性重复的特点。周期性流动分两种:一种是在周期性平面内没有压降的周期流;第二种是流向周期流。本解讨论流向周期流以及周期性热传导,关于没有压降的周期流请参阅周期性边界条件一节。引言FLUENT提供流向周期流的计算。这种流动具有广泛的应用,如热交换管道以及通过水箱的管流。在这些流动模式中,几何外形沿流动方向上具有重复性的特点,从而导致了周期性完全发展的流动。这些周期性条件在足够的入口长度后就会形成,具体与雷诺数和几何外形有关。精选
34、学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 25 页流向周期流会在足够长度L 之后形成,在流向的每一个重复流动模式之间会有一个一定的压降。下图就是一例。Figure 1: 二维热交换几何外形的周期性流动例子交换的几何外形当壁面是常温或者热流一定时会产生周期性热条件。在这一问题中,温度场是周期性发展的。至于周期性流动,分析这类问题可以将数值模型限制为单一模块或者周期性章度。使用流向周期性流动和热传导的限制:流动必须不可压几何外形必须是平移性的周期用耦合解你只能指定压力跳跃,分离解可以指定压力跳跃或者流速。在流动入口和出口没有质量的增加,外
35、部源项或者离散相源只能模拟出入口所包括的组分(没有质量的净增加),不允许有反应流不允许离散相和多项流模型周期性热传导的特殊限制:必须使用分离解热边界条件必须指定热流或者壁面温度常数。而且在特定的问题上这些边界类型不能结合在一起:对于常温算例,所有壁面温度必须是相同的,在壁面流量中,不同的热流必须区分为不同的壁面。在有固体的区域不可以横跨周期性平面热动力学和流体的输运性质(比热容,热传导系数,粘性系数,密度)不能是温度的函数,因此不可以模拟化学反应流。然而输运性质可能会以周期性的方式变化,这就允许你模拟周期性湍流,在这种周期性湍流流动中,输运性质(有效热传导系数,有效粘性系数)随着湍流流场变化。
36、周期流模拟程序概述考虑流向周期性流动和热传导的典型计算分两个部分。第一是不考虑温度场的速度场计算,然后固定速度场来计算温度场。步骤如下:2.设定流向周期性边界条件网格3.输入热力学常数和输运常数4.通过周期性边界条件指定周期性压力梯度以及净质量流速5.计算周期性流场,计算动量方程、连续性方程以及湍流方程(可选)6.指定壁面热边界条件:温度或热流7.定义入口温度8.解能量方程预测周期性温度场下面详细介绍流向周期性流动理论对于位置矢量,周期性假定有如下形式其中 L 是所考虑区域的周期长度矢量在方程 1 中压力不是周期性的。取而代之的是,模块之间的压降是周期性的:精选学习资料 - - - - - -
37、 - - - 名师归纳总结 - - - - - - -第 10 页,共 25 页如果使用某一耦合解算器,D p 被指定为常值。对于分离解算器,区域内每一位置的压力梯度可以分解为两个部分:周期性部分的梯度?p (r),以及线性变化部分的梯度b (L/|L|) :周期性压力 (p (r)减去线性变化的压力而得到的压力。压力的线性变化部分(b |r|)在动量方程中对流体有一作用力。因为b 的值无法提前预知,所以必须迭代直到达到在计算模型中你所定义的质量流速为止。B 的修正是在SIMPLE, SIMPLEC, 或 PISO 算法的修正步中实现的,其修正是基于所需质量流和实际质量流之间的差值的。你可以控
38、制子迭代的次数来更新 b,具体可以参阅使用分离解算器计算流向周期性流动所需用户输入一节。使用分离解算器计算流向周期性流动的用户输入如果使用分离解算器,为了计算出具有指定质量流速和压力导数的空间周期性流动,你必须创建具有平移性周期边界的网格,该网格中的单元相互平行且尺寸相等。你可以在周期性面板中指定平移性周期,具体可以参阅周期性边界条件一节。(如果想要创建周期性边界请参阅创建周期性区域一节)。读入网格之后,你需要在周期性条件面板(Figure 1) 中完成下面的输入。菜单:Define/Periodic Conditions. 。Figure 1: 周期性条件面板1. 选择指定质量流速选项或者指
39、定压力梯度选项。对于大多数问题,通过周期性边界的质量流速是已知的,如果质量流速未知,压力梯度也将会是已知的量。2. 指定质量流速和/或指定压力梯度:如果指定质量流速,请输入相应的数值。你还可以输入出示压力梯度的猜测值,但不是必需的。需要注意的是,对于轴对称流动,质量流动速度是每2p 的质量流速如果指定压力梯度,请输入压力梯度的数值。3. 在流动方向框中分别输入X,Y 和 Z 的值作为方向矢量。此是流动就会从起始点沿着指定的方向到达指定点。流动方向必须是平行于周期性平移方向或者反向。4. 如果在第一步中选择质量流速,请输入计算b 的相应的参数。这些参数的输入可以参阅使用分离解算器计算流向周期性流
40、动的用户输入一节。完成上述输入之后,你就可以计算周期性速度场直到收敛了。如果指定质量流速,FLUENT需要计算压力梯度b 的适当值。你不可以通过指定松弛因子、迭代次数或压力梯度初始猜测值来控制压力梯度的计算。所有的这些输入都在周期性条件面板中完成。迭代次数设定了压力校正方程中校正b 的子迭代次数。因为b 的值无法预先知道,所以在计算模型中,你必须在定义的质量流速计算之后才会完成b 的迭代。 B 的校正出现在SIPLE 或者 SIMPLEC 算法的压力校正步中。对b 的当前值的校正是基于预期质量流速和实际质量流速之间的差值的。此出涉及的子迭代是在压力校正步中完成的,目的是为了提高在解校正方程获得
41、压力(和速度)校正值之前提高b 的校正质量。默认的子迭代次数为2,它可以满足大多数问题,但是可以增加它以获取快速的收敛。松弛因子在此处是压松弛因子,它控制了迭代过程的收敛。你可以在压力梯度框中输入猜测的初始压力梯度来提高周期性计算的收敛速度。如果你完成了任何计算,这个框会显示当前的b 值。要用当前的数值更新压力梯度框,你可以点击更新按钮。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 25 页使用耦合解算器计算流向周期性流动的用户输入如果你使用某一耦合解算器,为了计算具有指定压力跳跃的空间周期性流场,你首先要创建具有平移性边界条件的网
42、格,这些网格相互平行,尺寸相等。(如果需要创建周期性边界,请参阅创建周期性区域一节)。然后遵循如下步骤:1. 在边界条件面板中打开周期性面板(Figure 1),选择平移性周期(默认)。菜单:Define/Boundary Conditions. 。Figure 1:周期性面板2. 在周期性面板中设定周期性压力跳跃D p。完成上述输入可以开始计算直至收敛。检测压力梯度的值如果指定质量流速,你可以在解的过程中监视压力梯度的数值。具体方法:打开静态监视面板,选择per/pr-grad 作为监视变量。详情请参阅静态监视一节。流向周期性流动的后处理速度和压力场的结果应该完全是周期性的。如果用耦合解算器
43、计算周期性流动,压力场的报告将是真实压力p 的报告。如果使用分离解算器,FLUENT所报告的压力场将会是方程 5 中的周期性压力场p (r)。下图显示的是概述一节中的几何图形中的周期性压力场。如果指定质量流量并要FLUENT 计算压力梯度,你可以在周期性条件面板中查找流向压力梯度( b)的当前值。Figure 1: 二维热交换几何图形的周期性压力场预测指定温度边界条件的周期性热传导FLUENT可以解决两类热传导问题:与常数温度壁面具有热交换的流向周期性流动是FLUENT可以解决的一种周期性热传导问题。另一种可以解决的是具有指定壁面热流量的流动,具体可以参阅具有指定热流量条件的周期性热传导一节。
44、注意:只有在使用分离解算器时才可以模拟周期性热传导。常数壁面温度条件的周期性热传导方程对于常数壁面温度,当流体通过周期性区域时,其温度接近壁面边界的温度。但是温度可以用具有周期性行为来衡量。对于具有常数壁面温度的周期性流动,对温度较合适的度量为 119:体积温度 T_bulk,inlet 定义为:其中积分是对整个入口周期性边界(A)的积分。正是规定的温度q 服从通过长度为L 的周期性条件。常数壁面温度周期性热传导的用户输入为了模拟周期性热传导,你需要参照使用分离解算器模拟流向周期流动所需用户输入一节所介绍的方法来设定你的周期性模型,同时要注意概述中所提出的限制。除此之外,你需要提供如下与热传导
45、模型相关的信息:1. 在能量面板中激活能量方程解。菜单:Define/Models/Energy. 。2. 在各自的壁面面板为每一个壁面边界设定边温度T_wall 。注意:所有的壁面边界必须分配相同的温度,而且整个流场(除了周期性边界)必须由固定温度条件或者对称或零热流量边界来封闭不同的壁面边界。菜单:Define/Boundary Conditions. 3. 合适的话,定义固体区域。假如在区域的周边由固定温度条件封闭,你可以在区域内精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 25 页使用传导性固体区域。当你使用固定温度条件解周
46、期性热传导时,固体区域内不可以有热生成。菜单:Define/Boundary Conditions. 4. 设定常数流体属性(密度,热容,粘性,热传导系数,而不是在使用材料面板的1 中定义温度相关流体属性)。菜单:Define/Materials. 5. 在周期性面板中指定逆流体积温度。(体积温度不能等于壁面温度,因为它会给出常数温度在任何位置的价值不高的解。)菜单:Define/Periodic Conditions. 。周期性热传导的解策略完成了周期性热传导常数壁面温度的用户输入之后,你就可以解决流动和热传导问题直至收敛。最为有效的解决方法是首先解没有热传导的周期性流动,然后不改变流场来解
47、热传导问题,具体步骤如下:1.在解控制面板中关闭能量方程选项。菜单:Solve/Controls/Solution. 。2. 解剩下的方程(连续性,动量以及湍流参数(可选)来获取收敛的周期性流动的流场解。注意,当你在开始计算之前初始化流场时,请使用入口体积温度和壁面温度的平均值作为流场的初始温度。3. 回到解控制面板,关闭流动方程打开能量方程。4. 解能量方程直至收敛获取周期性温度场。当同时考虑流动和热传导来解决周期性流动和热传导问题时,你就会发现上面所介绍的方法相当有效。监视收敛性为了保证得到收敛解,你可以监测体积温度比的值:在计算过程中,打开静态监测面板,选择per/bulk-temp-r
48、atio 作为监测变量。详情请参阅静态监测一节。固定温度条件的周期性热传导的后处理在周期性模型中,由FLUENT所计算出的温度常将不会是周期性的,而且在后处理中察看温度结果时,FLUENT 会显示常数壁面温度度条件下周期性热传导方程1 中的真实温度场。所显示的温度可能会超出入口体积温度和壁面温度定义的范围。这种情况是允许的,因为在入口周期性表面处的真实温度轮廓可能会不等于入口体积温度。在后处理面板中,我们可以在变量选择下拉列表的温度类别中找到静温选项:下图所示为周期性热交换器的温度常。Figure 1: 具有固定温度边界条件的二维热交换器的温度场指定热流量条件的周期性热传导当指定热流量条件时,
49、我们可以获得周期性完全发展的温度场。在这种情况下,周期性边界之间的温度交换变成了常数,而且从边界处获取的热量的净增量有关。这个边界是指本节所介绍的边界。只有在使用分离解算器时才可以模拟周期性热传导。指定热流量条件的周期性热传导方程当考虑具有热流量条件的周期性热传导,非按尺度增加的温度场的形式变得和周期性流动的压力场相似其中 L 是区域内周期性长度矢量。温度梯度s与区域内部总的热量增加Q 的关系为:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 25 页其中 m(dot)是指定的或者计算的质量流速。指定热流量周期性热传导的用户输入为了模
50、拟周期性热传导,你需要遵照使用分离解算器计算流向周期性流动所需用户输入一节中介绍的方法来设定周期性模型,只是要注意一下引言中所讨论的限制条件。除此之外,你需要为热传导模型提供下面的相关输入:1. 在能量面板中激活能量方程解。菜单:Define/Models/Energy. 。2. 在壁面面板为每一个壁面设定热流量。不同的壁面边界可以定义不同的热流量值,待是在该区域内部不可以有其它的热边界条件。菜单:Define/Boundary Conditions. 3. 合适的话,定义固体区域。你可以在区域内任何位置定义传导性固体区域,需要的话还可以包括固体内部体积热的增加。菜单:Define/Bound