高级中学数学必修一至必修五学习知识重点情况总结.doc

举报
资源描述
-! 必修1 第一章 集合与函数概念 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 aA 二、集合间的基本关系 任何一个集合是它本身的子集。AA ②真子集:如果AB,且B A那就说集合A是集合B的真子集,记作A B(或B A) 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.(即找公共部分)记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。(即A和B中所有的元素)记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(即除去A剩下的元素组成的集合) 四、函数的有关概念 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 构成函数的三要素:定义域、对应关系和值域 4.了解区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示. 7.函数单调性 (1).增函数 设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量a,b,当a1 01 0 L α A∈α B∈α C B A α 公理1作用:判断直线是否在平面内. (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A、B、C三点不共线 => 有且只有一个平面α, 使A∈α、B∈α、C∈α。 公理2作用:确定一个平面的依据。 P α L β (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P∈L 公理3作用:判定两个平面是否相交的依据. 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 共面直线 相交直线:同一平面内,有且只有一个公共点; 平行直线: 同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线 =>a∥c a∥b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 4 注意点: ① a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关, 为了简便,点O一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, ); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 (2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点 指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示 a α a∩α=A a∥α 2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定 1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。 符号表示: a α b β => a∥α a∥b 2.2.2 平面与平面平行的判定 1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。 符号表示: a β b β a∩b = P =>β∥α a∥α b∥α 2、判断两平面平行的方法有三种: (1)用定义; (2)判定定理; (3)垂直于同一条直线的两个平面平行。 2.2.3 — 2.2.4直线与平面、平面与平面平行的性质 1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。 符号表示: a ∥α a β => a∥b α∩β= b 作用:利用该定理可解决直线间的平行问题。 2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。 符号表示: α∥β α∩γ= a => a∥b β∩γ= b 作用:可以由平面与平面平行得出直线与直线平行 2.3直线、平面垂直的判定及其性质 2.3.1直线与平面垂直的判定 1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。 P a L 2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 注意点: a)定理中的“两条相交直线”这一条件不可忽视; b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。 2.3.2平面与平面垂直的判定 1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形 A 梭 l β B    α 2、二面角的记法:二面角α-l-β或α-AB-β 3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质 1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。 2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。 第三章 直线与方程 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0≤α<180 (2)直线的斜率 ①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 当直线l与x轴平行或重合时, α=0, k = tan0=0; 当直线l与x轴垂直时, α= 90, k 不存在. 当时,; 当时,; 当时,不存在。 ②过两点的直线的斜率公式: ( P1(x1,y1),P2(x2,y2),x1≠x2) 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 ①点斜式:直线斜率k,且过点 注意:当直线的斜率为0时,k=0,直线的方程是y=y1。 当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 ②斜截式:,直线斜率为k,直线在y轴上的截距为b ③两点式:()直线两点, ④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 ⑤一般式:(A,B不全为0) 注意:各式的适用范围 特殊的方程如: 平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数); (6)两直线平行与垂直 当,时, ; 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。 (7)两条直线的交点 相交 交点坐标即方程组的一组解。 方程组无解 ; 方程组有无数解与重合 (8)两点间距离公式:设是平面直角坐标系中的两个点, 则 (9)点到直线距离公式:一点到直线的距离 (10)两平行直线距离公式 已知两条平行线直线和的一般式方程为:, :,则与的距离为 第四章 圆与方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (1)标准方程,圆心,半径为r; 点与圆的位置关系: 当>,点在圆外 当=,点在圆上 当<,点在圆内 (2)一般方程 当时,方程表示圆,此时圆心为,半径为 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线,圆,圆心到l的距离为 ,则有;; (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】 (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2 必修三 :辗转相除法与更相减损术(1)辗转相除法。也叫欧几里德算法,用辗转相除法求最大公约数的步骤如下: ①用较大的数m除以较小的数n得到一个商和一个余数; ②若=0,则n为m,n的最大公约数;若≠0,则用除数n除以余数得到一个商和一个余数;③若=0,则为m,n的最大公约数;若≠0,则用除数除以余数得到一个商和一个余数;…… 依次计算直至=0,此时所得到的即为所求的最大公约数。 (2)更相减损术 ①任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。②以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。 (3)辗转相除法与更相减损术的区别: ①都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。 ②从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到 8:秦九韶算法与排序 (1)秦九韶算法概念: f(x)=anxn+an-1xn-1+….+a1x+a0求值问题 f(x)=anxn+an-1xn-1+….+a1x+a0=( anxn-1+an-1xn-2+….+a1)x+a0 =(( anxn-2+an-1xn-3+….+a2)x+a1)x+a0 =......=(...( anx+an-1)x+an-2)x+...+a1)x+a0 求多项式的值时,首先计算最内层括号内依次多项式的值,即v1=anx+an-1然后由内向外逐层计算一次多项式的值,即v2=v1x+an-2 v3=v2x+an-3 ...... vn=vn-1x+a0 这样,把n次多项式的求值问题转化成求n个一次多项式的值的问题。 第二章:统计 1:简单随机抽样 类别 共同点 各自特点 相互关系 适用范围 简单随机抽样 抽样过程中每个个体被抽取的机会相等 从总体中逐个抽取 总体中的个体数较少 系统抽样 将总体均匀分成几部分,按事先确定的规则在各部分抽取 再起时部分抽样时采用简单随机抽样 总体中的个数较多 分成抽样 经总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样 总体由差异明显的几部分组成 4:用样本的数字特征估计总体的数字特征 (1)样本均值: (2)样本标准差: 用样本估计总体时,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。 (3)众数:在样本数据中,频率分布最大值所对应的样本数据(可以是多个)。 (4)中位数:在样本数据中,累计频率为1.5时所对应的样本数据值(只有一个)。 第三章:概 率 2:概率的基本性质 (1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1 (2)事件的包含、并事件、交事件、相等事件 (3)若A∩B为不可能事件,即A∩B=,那么称事件A与事件B互斥; (4)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件; (5)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B); 若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) (6)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:① 事件A发生且事件B不发生;②事件A不发生且事件B发生;③事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;④事件A发生B不发生;⑤事件B发生事件A不发生,对立事件互斥事件的特殊情形。 3:基本事件 (1)基本事件:基本事件是在一次试验中所有可能发生的基本结果中的一个,它是试验中不能再分的最简单的随机事件。 (2)基本事件的特点:①任何两个基本事件是互斥的②任何事件(除不可能事件外)都可以表示成基本事件的和。 4:古典概型: (1)古典概型的条件:古典概型是一种特殊的数学模型,这种模型满足两个条件: ①试验结果的有限性和所有结果的等可能性。②所有基本事件必须是有限个。 (2)古典概型的解题步骤; ①求出总的基本事件数; ②求出事件A所包含的基本事件数,然后利用公式 5:几何概型 (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式:; (3)几何概型的特点:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等. 注意:几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个。其特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状位置无关,值域该区域的大小有关。如果随即事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但他不是必然事件。 综上可得:必然事件的概率为1;不可能事件的概率为0。 概率为1的事件不一定为必然事件;概率为0的事件不一定为不可能事件。 必修4 第一章 三角函数(初等函数二) 3、与角终边相同的角的集合为 7、弧度制与角度制的换算公式:,,. 8、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,. 9、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:,,. Pv x y A O M T 12、同角三角函数的基本关系: ; 15、正弦函数、余弦函数和正切函数的图象与性质: 函 数 性 质 图象 定义域 值域 最值 当时,;当 时,. 当时, ;当 时,. 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 在 上是增函数;在 上是减函数. 在上是增函数;在 上是减函数. 在 上是增函数. 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为的向量. 单位向量:长度等于个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:. ⑷运算性质: ①交换律:; ②结合律:; ③. ⑸坐标运算:设,,则. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设,,则. 设、两点的坐标分别为,,则. 23、平面向量的数量积: ⑴.零向量与任一向量的数量积为. ⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③. ⑷坐标运算:设两个非零向量,,则. 若,则,或. 设,,则. 设、都是非零向量,,,是与的夹角,则. 第三章 三角恒等变换 24、两角和与差的正弦、余弦和正切公式: ⑴; ⑵; ⑶; ⑷; ⑸(); ⑹(). 25、二倍角的正弦、余弦和正切公式: ⑴. ⑵(,). ⑶. 26、,其中. 必修5 第一章 解三角形 1、正弦定理:在中,、、分别为角、、的对边,为的外接圆的半径,则有. 2、正弦定理的变形公式:①,,; ②,,;③; ④. (正弦定理主要用来解决两类问题:1、已知两边和其中一边所对的角,求其余的量。2、已知两角和一边,求其余的量。) 3、三角形面积公式:. 4、余弦定理:在中,有,,. 5、余弦定理的推论:,,. (余弦定理主要解决的问题:1、已知两边和夹角,求其余的量。2、已知三边求角) 6、如何判断三角形的形状:设、、是的角、、的对边,则:①若,则; ②若,则;③若,则. 附:三角形的四个“心”; 重心:三角形三条中线交点. 外心:三角形三边垂直平分线相交于一点. 内心:三角形三内角的平分线相交于一点. 垂心:三角形三边上的高相交于一点 第二章 数列 11、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.符号表示:。注:看数列是不是等差数列有以下三种方法: ① ②2() ③(为常数 12、由三个数,,组成的等差数列可以看成最简单的等差数列,则称为与的等差中项.若,则称为与的等差中项. 13、若等差数列的首项是,公差是,则. 14、通项公式的变形:①;②;③; ④;⑤. 15、若是等差数列,且(、、、),则;若是等差数列,且(、、),则. 16、等差数列的前项和的公式:①;②.③ 18、如果一个数列从第项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.符号表示:(注:①等比数列中不会出现值为0的项;②同号位上的值同号) 注:看数列是不是等比数列有以下四种方法: ① ②(,) ③(为非零常数). ④正数列{}成等比的充要条件是数列{}()成等比数列. 19、在与中间插入一个数,使,,成等比数列,则称为与的等比中项.若,则称为与的等比中项.(注:由不能得出,,成等比,由,,) 20、若等比数列的首项是,公比是,则. 21、通项公式的变形:①; 22、若是等比数列,且(、、、),则;若是等比数列,且(、、),则. 23、等比数列的前项和的公式:①.② 24、对任意的数列{}的前项和与通项的关系: ③非零常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 附:数列求和的常用方法 1. 公式法:适用于等差、等比数列或可转化为等差、等比数列的数列。 2.裂项相消法:适用于其中{ }是各项不为0的等差数列,c为常数;部分无理数列、含阶乘的数列等。 3.错位相减法:适用于其中{ }是等差数列,是各项不为0的等比数列。 4.倒序相加法: 类似于等差数列前n项和公式的推导方法. 第三章 不等式 一元二次不等式的求解: 特例① 一元一次不等式ax>b解的讨论; ②一元二次不等式ax2+bx+c>0(a>0)解的讨论. 二次函数 ()的图象 一元二次方程 有两相异实根 有两相等实根 无实根 R 对于a<0的不等式可以先把a化为正后用上表来做即可。 11、设、是两个正数,则称为正数、的算术平均数,称为正数、的几何平均数. 12、均值不等式定理: 若,,则,即. 13、常用的基本不等式: ①; ②; ③; ④. 14、极值定理:设、都为正数,则有: ⑴若(和为定值),则当时,积取得最大值.⑵若(积为定值),则当时,和取得最小值.
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁