高级中学数学会考学习知识重点情况总结-(超级经典编辑).doc

举报
资源描述
.\ 数学学业水平复习知识点 第一章 集合与简易逻辑 1、 集合 (1)、定义:某些指定的对象集在一起叫集合;集合中的每个对象叫集合的元素。 集合中的元素具有确定性、互异性和无序性;表示一个集合要用{ }。 (2)、集合的表示法:列举法()、描述法()、图示法(); (3)、集合的分类:有限集、无限集和空集(记作,是任何集合的子集,是任何非空集合的真子集); (4)、元素a和集合A之间的关系:a∈A,或aA; (5)、常用数集:自然数集:N ;正整数集:N;整数集:Z ;整数:Z;有理数集:Q;实数集:R。 2、子集 (1)、定义:A中的任何元素都属于B,则A叫B的子集 ;记作:AB, 注意:AB时,A有两种情况:A=φ与A≠φ (2)、性质:①、;②、若,则;③、若则A=B ; 3、真子集 (1)、定义:A是B的子集 ,且B中至少有一个元素不属于A;记作:; A (2)、性质:①、;②、若,则; 4、 补集 ①、定义:记作:; B A ②、性质:; 5、 交集与并集 (1)、交集: A B 性质:①、 ②、若,则 (2)、并集: 性质:①、 ②、若,则 6、一元二次不等式的解法:(二次函数、二次方程、二次不等式三者之间的关系) 判别式:△=b2-4ac x1 x2 x y O x1=x2 x y O x y O 二次函数 的图象 一元二次方程 的根 有两相异实数根 有两相等实数根 没有实数根 一元二次不等式 的解集 “>”取两边 R 一元二次不等式 的解集 “<”取中间 不等式解集的边界值是相应方程的解 含参数的不等式ax+b x+c>0恒成立问题含参不等式ax+b x+c>0的解集是R; 其解答分a=0(验证bx+c>0是否恒成立)、a≠0(a<0且△<0)两种情况。 7、绝对值不等式的解法:(“>”取两边,“<”取中间) (1)、当时,的解集是,的解集是 (2)、当时,, (3)、含两个绝对值的不等式:零点分段讨论法:例: 8、简易逻辑: (1)命题:可以判断真假的语句;逻辑联结词:或、且、非; 原命题 若p则q 逆命题 若q则p 否命题 若p则q 逆否命题 若q则p 否 逆 为 互 互 否 互逆 互逆 互 否 互 为 逆 否 简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题; 三种形式:p或q、p且q、非p; 判断复合命题真假: [1]、思路:①、确定复合命题的结构, ②、判断构成复合命题的简单命题的真假, ③、利用真值表判断复合命题的真假; [2]、真值表:p或q,同假为假,否则为真; p且q,同真为真;非p,真假相反。 (2)、四种命题: 原命题:若p则q; 逆命题:若q则p; 否命题:若p则q; 逆否命题:若q则p; 互为逆否的两个命题是等价的。 原命题与它的逆否命题是等价命题。 (3)、反证法步骤:假设结论不成立→推出矛盾→否定假设。 (4)、充分条件与必要条件: 若,则p叫q的充分条件; 若,则p叫q的必要条件; 若,则p叫q的充要条件; 第二章 函数 1、映射:按照某种对应法则f ,集合A中的任何一个元素,在B中都有唯一确定的元素和它对应, 记作f:A→B,若,且元素a和元素b对应,那么b叫a的象,a叫b的原象。 2、函数:(1)、定义:设A,B是非空数集,若按某种确定的对应关系f,对于集合A中的任意一个数x,集合B中都有唯一确定的数f(x)和它对应,就称f:A→B为集合A到集合B的一个函数,记作y=f(x), (2)、函数的三要素:定义域,值域,对应法则;自变量x的取值范围叫函数的定义域,函数值f(x)的范围叫函数的值域,定义域和值域都要用集合或区间表示; (3)、函数的表示法常用:解析法,列表法,图象法(画图象的三个步骤:列表、描点、连线); (4)、区间:满足不等式的实数x的集合叫闭区间,表示为:[a ,b] 满足不等式的实数x的集合叫开区间,表示为:(a ,b) 满足不等式或的实数x的集合叫半开半闭区间,分别表示为:[a ,b)或(a ,b]; (5)、求定义域的一般方法:①、整式:全体实数,例一次函数、二次函数的定义域为R; ②、分式:分母,0次幂:底数,例: ③、偶次根式:被开方式,例: ④、对数:真数,例: (6)、求值域的一般方法:①、图象观察法: ②、单调函数:代入求值法: ③、二次函数:配方法:, ④、“一次”分式:反函数法: ⑤、“对称”分式:分离常数法: ⑥、换元法: (7)、求f(x)的一般方法: ①、待定系数法:一次函数f(x),且满足,求f(x) ②、配凑法:求f(x) ③、换元法:,求f(x) ④、解方程(方程组):定义在(-1,0)∪(0,1)的函数f(x)满足,求f(x) 3、函数的单调性: (1)、定义:区间D上任意两个值,若时有,称为D上增函数; 若时有,称为D上减函数。(一致为增,不同为减) (2)、区间D叫函数的单调区间,单调区间定义域; (3)、判断单调性的一般步骤:①、设,②、作差,③、变形,④、下结论 (4)、复合函数的单调性:内外一致为增,内外不同为减; 4、反函数:函数的反函数为;函数和互为反函数; 反函数的求法:①、由,解出,②、互换,写成,③、写出的定义域(即原函数的值域); 反函数的性质:函数的定义域、值域分别是其反函数的值域、定义域; 函数的图象和它的反函数的图象关于直线对称; 点(a,b)关于直线的对称点为(b,a); 5、指数及其运算性质:(1)、如果一个数的n次方根等于a(),那么这个数叫a的n次方根; 叫根式,当n为奇数时,;当n为偶数时, (2)、分数指数幂:正分数指数幂:;负分数指数幂: 0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当时:,; 6、对数及其运算性质:(1)、定义:如果,数b叫以a为底N的对数,记作,其中a叫底数,N叫真数,以10为底叫常用对数:记为lgN,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:,③、底的对数等于1:,④、积的对数:, 商的对数:, 幂的对数:, 方根的对数:, 7、指数函数和对数函数的图象性质 函数 指数函数 对数函数 定义 () () 1 y x y=ax O 图象 (非奇非偶) a>1 01 0”取两边,“<”取中间 绝对值不等式:含一个绝对值符号的:“>”取两边,“<”取中间 含两个绝对值符号的: 零点分段讨论法(注意取“交”,还是取“并”) 高次不等式的解法:根轴法 (重根:奇穿偶不穿) 分式不等式的解法:移项、通分、根轴法 5、绝对值不等式: 例:(最小值) (最大值) 第七章:直线和圆的方程 1、倾斜角和斜率:(1)倾斜角: ①、范围: o ②、定义:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴饶交点按逆时针方向旋转到和直线重合时的最小正角记为,则叫直线的倾斜角;当直线与和x轴平行或重合时,倾斜角为;当直线与和x轴垂直时,倾斜角为9 (2)斜率:, 当是特殊角的三角函数值时,直接写出角 当不是特殊角的三角函数值时,可用反三角表示斜率: (3)直线上两点,则斜率为 直线的方向向量 所以直线的方向向量或 2、直线方程:直线方程的五种形式(1)、点斜式:; (2)、斜截式:;(3)、两点式: (4)、截距式:(截距是直线与坐标轴的交点坐标,可正可负可为零) (5)、一般式: (A、B不同时为0) 斜率,轴截距为 3、两直线的位置关系 (1)平行: 时 ,; 垂直: ; (2)相交: ,交点就是方程组 的解。 任意曲线的交点就是:曲线方程构成的方程组的解 (3)到角范围: 到角公式 : 都存在, 夹角范围: 夹角公式: 都存在, (4)点到直线的距离公式(直线方程必须化为一般式) 两平行线间的距离公式:(即一条直线上任一点到另一条直线的距离) 4、 线性规划:(1)二元一次不等式表示的平面区域: 不等式(或≤,或>,或< )表示直角坐标系中以直线为分界的直线某一侧的平面区域。 (2)求线性目标函数在线性约束条件下的最大值或最小值问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域; 使目标函数取得最大值或最小值的可行解叫做最优解。最优解常在区域的交点或边界上。 (3) 具体解题的步骤:画出图形,求交点,代入目标函数求值,确定最大值或最小值 注意实际问题中的整数解(整点) 5、 曲线方程:(1)曲线和方程的关系:在直角坐标系中,曲线C的点与方程F(x,y)=0的实数解满足: ①曲线C上的点的坐标都是方程F(x,y)=0的解, ②方程F(x,y)=0的解为坐标的点都在曲线C上,那么,方程叫曲线的方程,曲线叫方程的曲线 (2)曲线方程步骤:①建系,设点; ②列方程;③化简(注明条件)。 (3)方法:直接法:直接把相等关系转化为方程; 定义法:常用的是圆、椭圆、双曲线的定义; 代入法:用所求的点的坐标表示已知曲线上的点的坐标,代入已知曲线方程; 参数法:常用的参数有角、斜率、题中的字母系数; 6、圆的方程:(1)圆的标准方程 ,圆心为,半径为 (2)圆的一般方程(配方:) 时,表示一个以为圆心,半径为的圆 (3)圆的参数方程为 (为参数),圆心在原点时: (参数方程的实质是曲线上点的横、纵坐标) (4)点与圆的位置关系:判断方法,上=0 (5)直线与圆位置关系:已知直线和圆 ①、圆心到直线的距离与比较,相离,相切,相交; ②、利用根的判别式:联立消元后得一元二次方程的判别式, 直线和圆相交,直线和圆相切,直线和圆相离; 相关问题:求弦长:弦心距,半径,弦的一半组成 (6)求圆的切线方程:设点斜式,用圆心到切线的距离等于半径,求斜率; ①、过圆上一点的切线只有一条,方程为: ②、过圆外一点的切线一定有两条;(若只解出一个斜率,另一条没有斜率,切线方程为:) ③、斜率确定的切线一定有两条(如图)。 (7)圆中的最值问题:数形结合,寻求解法 第八章:圆锥曲线 1、 圆锥曲线的定义、标准方程、图象、几何性质 曲线 椭圆 双曲线 抛物线 第一定义 平面内到两个定点F1,F2的距离之和等于定值2a(2a>|F1F2|)的点的轨迹。 平面内到两个定点F1,F2的距离之差的绝对值等于定值2a(0<2a<|F1F2|)的点的轨迹。 平面内到定点F和定直线L的距离相等的点的轨迹。 即:平面内到定点F和定直线L的距离之比为常数e(e=1)的点的轨迹。 第二定义 平面内到定点F和定直线L的距离之比为常数e(01)的点的轨迹。 标准方程 图象 F1 F2 F1 F2 F 由双曲线求渐进线: 由渐进线求双曲线: 2、求离心率:方法一:用的定义;法二:得到与有关的方程,解方程,求; (离心率与的关系可以互相表示:椭圆,双曲线) 3、直线和圆锥曲线的位置关系: (1)、判断直线与圆锥曲线的位置关系的方法(基本思路) →消元→一元二次方程→判别式 Δ (方程的思想) (2)、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式 (3)、与弦的中点有关的问题常用“点差法”: 把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系; (弦的中点与弦的斜率可以相互表示) (4)、与双曲线只有一个交点的直线:一相切,二与渐近线平行 与抛物线只有一个交点的直线:一相切,二与对称轴平行 4、圆锥曲线的最值问题: (1)、利用第二定义,把到焦点的距离转化为到准线的距离求最值; (2)、结合曲线上的点的坐标,利用点到直线的距离公式转化为二次函数求最值; 在上的点常设,在上的点常设 (3)、利用数形结合求最值;基本思路:与直线平行,与曲线相切. (椭圆中,长轴是最长的弦;双曲线中,实轴是最短的弦。) 第九章 直线 平面 简单的几何体 1、 平面的性质: 公理1:如果有一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内。 公理2:如果两个平面有一个公共点, 那么它们还有其他公共点,这些公共点的集合是一条直线。 (两平面相交,只有一条交线)且 公理3:不在同一直线上的三点确定一个平面。(强调“不共线”) (三个推论:1、直线和直线外一点,2、两条相交直线,3、两条平行直线,确定一个平面) 空间图形的平面表示方法:斜二测画法(水平长不变,竖直长减半) 2、 两条直线的位置关系:平行,相交,异面:不同在任何一个平面内的两条直线叫异面直线 (1)、异面直线判断方法:①定义, ②判定:连结平面内一点与平面外一点的直线,和这个平面不经过此点的直线是异面直线.(两在两不在) α a A a∩α=A (2)、两条直线垂直:两条异面直线所成的角是直角,这两条直线互相垂直. 垂直相交(共面)、异面垂直,都叫两条直线互相垂直. (3)、空间平行直线:公理4:平行于同一直线的两条直线互相平行。 3、直线与平面的位置关系: 直线在平面内 α a a//α 直线在平面外 直线与平面相交,记作a∩α=A 直线与平面平行,记作a//α 4、直线与平面平行:定义:直线和平面没有公共点。 (1)、判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行, 那么这条直线和这个平面平行. (线线平行线面平行) (2)、性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么 α l β m 这条直线和交线平行.(线面平行线线平行) 5、两个平面平行:定义:两个平面没有公共点。 (1)、判定定理:如果一个平面内有两条相交直线分别平行于另一个平面, 那么这两个平面平行。(线面平行面面平行) 推论:如果一个平面内有两条相交直线分别平行与另一个平面内的两条直线,那么这两个平面平行。 (2)、性质定理:①两个平行平面同时与第三个平面相交,那么它们的交线平行。(面面平行线线平行) ②两个平面平行,其中一个平面内的直线,平行于另一个平面;(面面平行线面平行) ③夹在两个平行平面间的两条平行线段相等。 平行间的相互转化关系:线线平行 线面平行 面面平行 6、直线和平面垂直:定义:如果一条直线和一个平面相交,且和这个平面内的任意一条直线都垂直,叫直线和平面垂直。(常用于证明线线垂直:线面垂直线线垂直) (1)、判定定理:一条直线和一个平面内的两条相交直线都垂直,则直线和这个平面垂直。 (线线垂直线面垂直) (2)、性质定理:①过一点和已知平面垂直的直线只有一条,过一点和已知直线垂直的平面只有一条。 ②如果两条平行线中的一条垂直于一个平面,另一条也垂直于这个平面。 ③线段垂直平分面内的任意一点到线段两端点距离相等。 (3)正射影:自一点P 向平面引垂线,垂足P‘叫点P在内的正射影(简称射影) 斜线在平面内的射影:过斜线上斜足外一点,作平面的垂线,过垂足和斜足的直线叫斜线在平面内的射影。 (4)三垂线定理:在平面内的一条直线和平面的一条斜线的射影垂直,则它和这条斜线垂直。 逆定理:在平面内的一条直线和平面的一条斜线垂直,则它和这条斜线的射影垂直。 C B E A D P O A a a 7、两个平面垂直:定义:平面角是直角的二面角叫直二面角,相交成直二面角的两个平面垂直。 (1)、判定定理:一个平面过另一个平面的一条垂线,那么这两个平面互相垂直。(线面垂直面面垂直) (2)、性质定理:两个平面互相垂直,那么在一个平面内垂直于它们交线的直线,垂直于另一个平面。 (面面垂直线面垂直) 垂直间的相互转化关系:线线垂直 线面垂直 面面垂直 8、空间向量:在空间具有大小和方向的量,空间任意两个向量都可用同一平面内的有向线段表示。 (1)、共线向量定理:空间任意两个向量,(),// () A B P O 空间直线的向量参数表达式(P在面MAB内的充要条件): 或 (叫直线AB的方向向量) 当时,点P是线段AB的中点,则 (2)、共面向量定理:两个向量,不共线,则向量与 ,共面 () 平面的向量表达式(P在面MAB内的充要条件):或 O为空间任一点,当且时,P、A、B、C四点共面。 (3)、空间向量基本定理:如果三个向量、、不共面,那么对空间任一向量,存在一个的唯一有序实数组x,y,z,使, {,,}叫基底,、、叫基向量。 如果三个向量、、不共面,那么空间向量组成的集合为。 (4)、两个向量的数量积:,向量的模| |: 向量在单位向量方向的正射影是一个向量,即, (5)、 共线向量或平行向量:所在的直线平行或重合的向量; 直线的方向向量:和直线平行的向量; 共面向量:平行于同一平面的向量; 平面的法向量:和平面垂直的向量。 y x z 法向量的求法:设是平行于平面的两个不共线向量, 是平面的法向量,则:。 9、 空间直角坐标系:单位正交基底常用来表示。(如图) (1,0,0)(0,1,0)(0,0,1)其中:,,,,,, 1、空间向量的坐标运算:设,,则 (1);(2); (3)(); (4)∥(即 ); (5). (6);∵   =| || |cos< ,> ∴ ==cos<,> 由此可以得出:两个向量的夹角公式cos<,>= 当cos<a、b>=1时,a与b同向;当cos<a、b>=-1时,a与b反向;当cos<a、b>=0时,a⊥b. 在空间直角坐标系中,已知点,, A、B两点间的距离公式: A、 B中点M坐标公式:= 10、角 (1)、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相同。 (2)、最小角定理:平面的斜线和它在平面内的射影所成的角是这条斜线和这个平面内任一条直线所成的角中最小的.公式:; O B A C (3)、角的范围: ①、异面直线所成的角的范围: 两条直线所成的角的范围: 两个向量所成的角的范围: ②、斜线与平面所成的角的范围: 直线与平面所成的角的范围: ③、二面角的范围: (4)、定义及求法: ①、异面直线所成的角:已知两条异面直线、,经过空间任一点作∥,∥,与所成的锐角(或直角)叫做异面直线与所成的角(或夹角).范围:. 求法一:作平行线;求法二:(向量)两条直线的方向向量的夹角的余弦的绝对值为两直线的夹角的余弦。 ②、斜线和平面所成的角:一个平面的斜线和它在这个平面内的射影的夹角;斜线和平面不垂直,不平行。 如果直线和平面平行或在平面内,则直线和平面所成的角是0。的角。 n a A P O q O O’ B B’ A A’ 求法一:公式;求法二:解直角三角形,斜线、斜线的射影、垂线构成直角三角形;求法三:向量法:已知PA为平面a的一条斜线,n为平面a的一个法向量,过P作平面a的垂线PO,连结OA则PAO为斜线PA和平面a所成的角为q,则 ③、二面角:从一条直线出发的两个半平面所组成的图形叫二面角,直线叫二面角的棱; 二面角的平面角:垂直于二面角的棱,且与两个半平面的交线所成的角。 求法一:几何法:一作二证三计算.利用三垂线定理及其逆定理作二面角的平面角,再解直角三角形; A A‘ O B 求法一:向量法:二面角的两个半平面的法向量所成的角(或其补角) n1和n2分别为平面a和b的法向量,记二面角的大小为q, n1 n2 l 则或(依据两平面法向量的方向而定) A A‘ O B 总有=, 若该二面角为锐二面角 则 若二面角为钝二面角则 n a A P O q 11、距离(满足最小值原理) (1)、点到平面的距离:一点到它在平面内的正射影的距离; 求法一:解直角三角形;求法二:等积法,利用体积相等; 求法三:向量法:如图点P为平面外一点,点A为平面内的任一点, 平面的法向量为n,过点P作平面a的垂线PO,记PA和平面a所成的角为q, 则点P到平面的距离 (2)、直线到平行平面的距离:直线上任一点到与它平行的平面的距离;求法:转化为点到平面的距离求。 (3)、两个平行平面的距离:两个平行平面的共垂线段的长度;求法:转化为点到平面的距离来求。 (4)、异面直线的距离:两条异面直线的公垂线夹在异面直线间的部分;(公垂线是唯一的,必须垂直相交) 求法一:解直角三角形;求法二:异面直线上任意两点的距离公式: 求法三:向量法:先求两条异面直线的一个公共法向
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁