《九年级数学随堂练习3(2013连云港).doc》由会员分享,可在线阅读,更多相关《九年级数学随堂练习3(2013连云港).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学随堂练习(3)1. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:若进行大量摸球实验,摸出白球的频率稳定于30%,若从布袋中任意摸出一个球,该球是黑球的概率最大;若再摸球100次,必有20次摸出的是红球其中说法正确的是()ABCD2. 如图,正方形ABCD的边长为4,点E在对角线BD上,且BAE=22.5,EFAB,垂足为F,则EF的长为()A1BC
2、42D34第4题第3题第2题 3. 如图,一束平行太阳光线照射到正五边形上,则1= 4. 点O在直线AB上,点A1、A2、A3,在射线OA上,点B1、B2、B3,在射线OB上,图中的每一个实线段和虚线段的长均为一个单位长度,一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以O为圆心的半圆匀速运动,速度为每秒1个单位长度,按此规律,则动点M到达A101点处所需时间为 秒5. 先化简,再求值:(),其中m=3,n=56. 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次
3、传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由7. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E将点C翻折到对角线BD上的点N处,折痕DF交BC于点F(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为为菱形,且AB=2,求BC的长8. 如图,已知一次函数y=2x+2的图象与x轴交于点B,与反比例函数y=的图象的一个交点为A(1,m)过点B作AB的垂线BD,与反比例函数y=(x0)的图象交于点D(n,2)(1)求k1和k2的值; (2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得BDFACE?若存在,求出点F的坐标;若不存在,请说明理由9. 如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6)动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0t5)以P为圆心,PA长为半径的P与AB、OA的另一个交点分别为C、D,连接CD、QC(1)求当t为何值时,点Q与点D重合?(2)设QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若P与线段QC只有一个交点,请直接写出t的取值范围