资源描述
.*
1、追及、相遇模型
火车甲正以速度v1向前行驶,司机突然发现前方距甲d处有火车乙正以较小速度v2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a应满足什么条件?
故不相撞的条件为
2、传送带问题
1.(14分)如图所示,水平传送带水平段长=6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v0=5m/s的初速度滑上传送带,物块与传送带间的动摩擦因数为0.2,g=10m/s2,求:
(1)若传送带静止,物块滑到B端作平抛运动的水平距离S0。
(2)当皮带轮匀速转动,角速度为ω,物体平抛运动水平位移s;以不同的角速度ω值重复上述过程,得到一组对应的ω,s值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s—ω关系图象。
解:(1)
(2)综上s—ω关系为:
2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以恒定的速率运送质量为的工件,工件都是以的初速度从A位置滑上传送带,工件与传送带之间的动摩擦因数,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取,求:
(1)工件滑上传送带后多长时间停止相对滑动
(2)在正常运行状态下传送带上相邻工件间的距离
(3)在传送带上摩擦力对每个工件做的功
(4)每个工件与传送带之间由于摩擦产生的内能
解:(1)工作停止相对滑动前的加速度 ①
由可知: ②
(2)正常运行状态下传送带上相邻工件间的距离 ③
(3) ④
(4)工件停止相对滑动前相对于传送带滑行的距离
⑤
⑥
3、汽车启动问题
匀加速启动
恒定功率启动
4、行星运动问题
[例题1] 如图6-1所示,在与一质量为M,半径为R,密度均匀的球体距离为R处有一质量为m的质点,此时M对m的万有引力为F1.当从球M中挖去一个半径为R/2的小球体时,剩下部分对m的万有引力为F2,则F1与F2的比是多少?
5、微元法问题
微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。
例1:如图3—1所示,一个身高为h的人在灯以悟空速度v沿水平直线行走。设灯距地面高为H ,求证人影的顶端C点是做匀速直线运动。
设某一时间人经过AB处,再经过一微小过程Δt(Δt→0),则人由AB到达A′B′,人影顶端C点到达C′点,由于ΔSAA′= vΔt则人影顶端的移动速度:
vC ===v
可见vc与所取时间Δt的长短无关,所以人影的顶端C点做匀速直线运动。
6、等效法问题
例1:如图4—1所示,水平面上,有两个竖直的光滑墙壁A和B ,相距为d ,一个小球以初速度v0从两墙之间的O点斜向上抛出,与A和B各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ 。
由题意得:2d = v0cosθt = v0cosθ
可解得抛射角:θ =arcsin
例2:质点由A向B做直线运动,A 、B间的距离为L ,已知质点在A点的速度为v0 ,加速度为a ,如果将L分成相等的n段,质点每通过的距离加速度均增加,求质点到达B时的速度。
因加速度随通过的距离均匀增加,则此运动中的平均加速度为:
a平 ====
由匀变速运动的导出公式得:2a平L =-
解得:vB =
7、超重失重问题
【例4】如图24-3所示,在一升降机中,物体A置于斜面上,当升降机处于静止状态时,物体A恰好静止不动,若升降机以加速度g竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是
[ ]
A.物体仍然相对斜面静止,物体所受的各个力均不变
B.因物体处于失重状态,所以物体不受任何力作用
C.因物体处于失重状态,所以物体所受重力变为零,其它力不变
D.物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用
点拨:(1)当物体以加速度g向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.
(2)处于完全失重状态的物体,地球对它的引力即重力依然存在.
答案:D
4.如图24-5所示,质量为M的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为
[ D ]
8、万有引力问题
例、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为L。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。求该星球的质量M。
D
d
L
O
m
B
C
A
图9
例、小球A用不可伸长的细绳悬于O点,在O点的正下方有一固定的钉子B,OB=d,初始时小球A与O同水平面无初速度释放,绳长为L,为使小球能绕B点做完整的圆周运动,如图9所示。试求d的取值范围。
解.为使小球能绕B点做完整的圆周运动,则小球在D对绳的拉力F1应该大于或等于零,即有: 根据机械能守恒定律可得
由以上两式可求得:
9、天体运动问题
7.(16分)火星和地球绕太阳的运动可以近似看作为同一平面内同方向的匀速圆周运动,已知火星的轨道半径,地球的轨道半径,从如图所示的火星与地球相距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字
10、牛顿第二定律问题
例3 为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速 v=120km/h,假设前方车辆突然停下,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车受到阻力的大小f为汽车重力的0.40倍,该高速公路上汽车间的距离s至少应为多少?取 g=10m/s2.
11、平抛问题
10.如图所示,在一次空地演习中,离地H高处的飞机以水平速度发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度竖直向上发射炮弹拦截. 设拦截系统与飞机的水平距离为s,若拦截成功,不计空气阻力,则、的关系应满足( )
A.= B.= C.= D.=
12、曲线运动问题
17.(10分)如图所示,支架质量M,放在水平地面上,在转轴O处用一长为l的细绳悬挂一质量为m的小球。求:
(1)小球从水平位置释放后,当它运动到最低点时地面对支架的支持力多大?
(2)若小球在竖直平面内摆动到最高点时,支架恰对地面无压力,则小球在最高点的速度是多大?
13、图线问题
1. 质量为的m物体放在A地的水平地面上,用竖直向上的力拉物体,物体的加速度a和拉力F关系的a-F图线如图中A所示。质量为m’的另一物体在B地做类似实验所得a-F图线如图中B所示。A、B两线延长线交Oa轴于同一点P。设A、B两地重力加速度分别为g和g’ ( )
A、m’>m g’=g B、m’m g’mB,mA>mB ; D、mB式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出:
由<1><2>两式解得
29爆炸反冲模型
1. 如图3.12所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m,当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?
图3.12
解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能,由于平抛的射高相等,两次射程的比等于抛出时初速度之比,即:,所以。
30滑轮模型
1. 如图5.01所示,一路灯距地面的高度为h,身高为的人以速度v匀速行走。
(1)试证明人的头顶的影子作匀速运动;
(2)求人影的长度随时间的变化率。
图5.01
解:(1)设t=0时刻,人位于路灯的正下方O处,在时刻t,人走到S处,根据题意有OS=vt,过路灯P和人头顶的直线与地面的交点M为t时刻人头顶影子的位置,如图2所示。OM为人头顶影子到O点的距离。
图2
由几何关系,有
联立解得
因OM与时间t成正比,故人头顶的影子作匀速运动。
(2)由图2可知,在时刻t,人影的长度为SM,由几何关系,有SM=OM-OS,由以上各式得
可见影长SM与时间t成正比,所以影长随时间的变化率。
31渡河模型
1. 小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,,x是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为,则下列说法中正确的是( )
A. 小船渡河的轨迹为曲线
B. 小船到达离河岸处,船渡河的速度为
C. 小船渡河时的轨迹为直线
D. 小船到达离河岸处,船的渡河速度为
答案:A
32电路的动态变化
1. 如图6.03所示电路中,R2、R3是定值电阻,R1是滑动变阻器,当R1的滑片P从中点向右端滑动时,各个电表的示数怎样变化?
33交变电流
1. 一闭合线圈在匀强磁场中做匀角速转动,线圈转速为240rad/min ,当线圈平面转动至与磁场平行时,线圈的电动势为2.0V 。设线圈从垂直磁场瞬时开始计时,试求:
(1)该线圈电动势的瞬时表达式;
(2)电动势在s末的瞬时值。
答案:(1)2sin8πtV 、(2)1.0V
34电磁场中的单杆模型
1. 如图7.01所示,,电压表与电流表的量程分别为0~10V和0~3A,电表均为理想电表。导体棒ab与导轨电阻均不计,且导轨光滑,导轨平面水平,ab棒处于匀强磁场中。
(1)当变阻器R接入电路的阻值调到30,且用=40N的水平拉力向右拉ab棒并使之达到稳定速度时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab棒的速度是多少?
(2)当变阻器R接入电路的阻值调到,且仍使ab棒的速度达到稳定时,两表中恰有一表满偏,而另一表能安全使用,则此时作用于ab棒的水平向右的拉力F2是多大?
图7.01
35电磁流量计模型
1. 图7.07是电磁流量计的示意图,在非磁性材料做成的圆管道外加一匀强磁场区域,当管中的导电液体流过此磁场区域时,测出管壁上的ab两点间的电动势,就可以知道管中液体的流量Q——单位时间内流过液体的体积()。已知管的直径为D,磁感应强度为B,试推出Q与的关系表达式。
36回旋加速模型
1. 在如图7.12所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴正方向成 60,大小为;y轴右方有一垂直纸面向里的匀强磁场,磁感应强度。有一质子以速度,由x轴上的A点(10cm,0)沿与x轴正方向成30斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场。已知质子质量近似为,电荷,质子重力不计。求:(计算结果保留3位有效数字)
(1)质子在磁场中做圆周运动的半径。
(2)质子从开始运动到第二次到达y轴所经历的时间。
(3)质子第三次到达y轴的位置坐标。
质子做匀速圆周运动的半径为:
质子从出发运动到第一次到达y轴的时间为
质子第三次到达y轴的坐标为(0,34.6cm)。
37磁偏转模型
1. 如图7.22所示,匀强电场的场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直于纸面向里.一个质量m=1g、带正电的小物体A从M点沿绝缘粗糙的竖直壁无初速下滑,当它滑行h=0.8m到N点时离开壁做曲线运动,运动到P点时恰好处于平衡状态,此时速度方向与水平方向成45设P与M的高度差H=1.6m.求:
图7.22
(1)A沿壁下滑过程中摩擦力做的功;
(2)P与M的水平距离S.(g取10m/s2)
解:(1)小物体到N点时离开壁时,qvNB=qE
vN=E/B=2m/s
从M到N的过程中,根据动能定理
代入数据得Wf=-610-3J
(2) 小物体运动到P点时恰好处于平衡状态qE=mg, ,m/s
从M到P的过程中,根据动能定理
代入数据得S=0.6m
展开阅读全文
相关搜索