《高一数学必修一练习情况总结复习资料计划.doc》由会员分享,可在线阅读,更多相关《高一数学必修一练习情况总结复习资料计划.doc(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、必修1 第1章 集 合1.1 集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择考纲要求:了解集合的含义、元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题经典例题:若xR,则3,x,x22x中的元素x应满足什么条件?当堂练习:1下面给出的四类对象中,构成集合的是( )A某班个子较高的同学 B长寿的人C的近似值 D倒数等于它本身的数2下面四个命题正确的是()A10以内的质数集合是0,3,5,7B由1,2,3组成的集合可表示
2、为1,2,3或3,2,1C方程的解集是1,1D0与0表示同一个集合3 下面四个命题: (1)集合N中最小的数是1; (2)若 -aZ,则aZ;(3)所有的正实数组成集合R+;(4)由很小的数可组成集合A; 其中正确的命题有( )个A1 B2 C3 D44下面四个命题: (1)零属于空集; (2)方程x2-3x+5=0的解集是空集; (3)方程x2-6x+9=0的解集是单元集; (4)不等式 2 x-60的解集是无限集;其中正确的命题有( )个A1 B2 C3 D45 平面直角坐标系内所有第二象限的点组成的集合是( )A x,y且 B (x,y) C. (x,y) D. x,y且6用符号或填空:
3、0_0, a_a,_Q,_Z,1_R,0_N,0 7由所有偶数组成的集合可表示为 8用列举法表示集合D=为 9当a满足 时, 集合A表示单元集10对于集合A2,4,6,若aA,则6aA,那么a的值是_11数集0,1,x2x中的x不能取哪些数值?12已知集合AxN|N,试用列举法表示集合A13.已知集合A=.(1)若A中只有一个元素,求a的值; (2)若A中至多有一个元素,求a的取值范围.14.由实数构成的集合A满足条件:若aA, a1,则,证明:(1)若2A,则集合A必还有另外两个元素,并求出这两个元素;(2)非空集合A中至少有三个不同的元素。必修1 1.2 子集、全集、补集重难点:子集、真子
4、集的概念;元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解;补集的概念及其有关运算考纲要求:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情景中,了解全集与空集的含义;理解在给定集合中一个子集的补集的含义,会求给定子集的补集经典例题:已知A=x|x=8m+14n,m、nZ,B=x|x=2k,kZ,问:(1)数2与集合A的关系如何?(2)集合A与集合B的关系如何?当堂练习:1下列四个命题:0;空集没有子集;任何一个集合必有两个或两个以上的子集;空集是任何一个集合的子集其中正确的有()A0个B1个C2个D3个2若Mxx1,Nxxa,且NM,则()Aa1Ba1Ca1Da1
5、3设U为全集,集合M、NU,且MN,则下列各式成立的是()Au Mu NBu MMCu Mu NDu MN4. 已知全集Ux2x1,Ax2x1 ,Bxx2x20,Cx2x1,则()ACABCu ACu BCDu AB5已知全集U0,1,2,3且u A2,则集合A的真子集共有()A3个 B5个 C8个D7个6若AB,AC,B0,1,2,3,C0,2,4,8,则满足上述条件的集合A为_7如果Mxxa21,aN*,Pyyb22b2,bN,则M和P的关系为M_P8设集合M1,2,3,4,5,6,AM,A不是空集,且满足:aA,则6aA,则满足条件的集合A共有_个9已知集合A=, u A=,u B=,则
6、集合B= 10集合Ax|x2x60,Bx|mx10,若BA,则实数m的值是 11判断下列集合之间的关系: (1)A=三角形,B=等腰三角形,C=等边三角形; (2)A=,B=,C=; (3)A=,B=,C=; (4)12 已知集合,且负实数,求实数p的取值范围13.已知全集U=1,2,4,6,8,12,集合A=8,x,y,z,集合B=1,xy,yz,2x,其中,若A=B,求u A.14已知全集U1,2,3,4,5,AxU|x25qx40,qR(1)若u AU,求q的取值范围;(2)若u A中有四个元素,求u A和q的值;(3)若A中仅有两个元素,求u A和q的值必修1 1.3 交集、并集重难点
7、:并集、交集的概念及其符号之间的区别与联系考纲要求:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;能使用韦恩图(Venn)表达集合的关系及运算经典例题:已知集合A= B=且AB=B,求实数a的取值范围 当堂练习:1已知集合,则的值为 ( )A B C D2设集合A(x,y)4xy6,B(x,y)3x2y7,则满足CAB的集合C的个数是()A0B1C2D33已知集合,则实数a的取值范围是( ) 4.设全集U=R,集合的解集是( ) A B (u N) C (u N) D5.有关集合的性质:(1) u(AB)=(u A)(u B); (2)u(AB)=(u A)(u B) (3)
8、A (uA)=U (4) A (uA)= 其中正确的个数有( )个A.1 B 2 C3 D4 6已知集合Mx1x2,Nxxa0,若MN,则a的取值范围是 7已知集合Axyx22x2,xR,Byyx22x2,xR,则AB8已知全集(u B)u A), ABC则A= ,B= 9表示图形中的阴影部分 10.在直角坐标系中,已知点集A=,B=,则(uA) B= 11已知集合M=,求实数a的的值12已知集合=,求实数b,c,m的值13. 已知AB=3, (uA)B=4,6,8, A(uB)=1,5,(u A)(uB)=,试求u(AB),A,B14.已知集合A=,B=,且AB=A,试求a的取值范围必修1
9、第1章 集 合1.4 单元测试1设A=x|x4,a=,则下列结论中正确的是( ) (A)a A (B)aA (C)aA (D)aA2若1,2 A1,2,3,4,5,则集合A的个数是( ) (A)8 (B)7 (C)4 (D)33下面表示同一集合的是( ) (A)M=(1,2),N=(2,1) (B)M=1,2,N=(1,2) (C)M=,N= (D)M=x|,N=14若PU,QU,且xCU(PQ),则( ) (A)xP且xQ (B)xP或xQ (C)xCU(PQ) (D)xCUP5 若MU,NU,且MN,则( ) (A)MN=N (B)MN=M(C)CUNCUM (D)CUMCUN6已知集合M
10、=y|y=x2+1,xR,N=y|y=x2,xR,全集I=R,则MN等于( )(A)(x,y)|x= (B)(x,y)|x(C)y|y0,或y1 (D)y|y1750名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )(A)35 (B)25 (C)28 (D)158设x,yR,A=,B= ,则A、B间的关系为( )(A)AB (B)BA (C)A=B (D)AB=9 设全集为R,若M= ,N= ,则(CUM)(CUN)是( )(A) (B) (C) (D) 10已知集合,若 则与集合的关系是 ( )(A)但(B)但
11、(C)且(D)且NUPM11集合U,M,N,P如图所示,则图中阴影部分所表示的集合是( ) (A)M(NP) (B)MCU(NP) (C)MCU(NP) (D)MCU(NP)12设I为全集,AI,B A,则下列结论错误的是( )(A)CIA CIB (B)AB=B (C)ACIB = (D) CIAB=13已知x1,2,x2,则实数x=_14已知集合M=a,0,N=1,2,且MN=1,那么MN的真子集有个15已知A=1,2,3,4;B=y|y=x22x+2,xA,若用列举法表示集合B,则B=16设,与是的子集,若,则称为一个“理想配集”,那么符合此条件的“理想配集”的个数是(规定与是两个不同的
12、“理想配集”) 17已知全集U=0,1,2,9,若(CUA)(CUB)=0,4,5,A(CUB)=1,2,8,AB=9,试求AB18设全集U=R,集合A=,B=,试求CUB, AB, AB,A(CUB), ( CU A) (CUB)19设集合A=x|2x2+3px+2=0;B=x|2x2+x+q=0,其中p,q,xR,当AB=时,求p的值和AB20设集合A=,B=,问:(1) a为何值时,集合AB有两个元素;(2) a为何值时,集合AB至多有一个元素21已知集合A=,B=,其中均为正整数,且,AB=a1,a4, a1+a4=10, AB的所有元素之和为124,求集合A和B22已知集合A=x|x
13、23x+2=0,B=x|x2ax+3a5,若AB=B,求实数a的值必修1 第2章 函数概念与基本初等函数2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解考纲要求:了解构成函数的要素,会求一些简单函数的定义域和值域;在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;了解简单的分段函数,并能简单应用;经典例题:设函数f(x)的定义域为0,1,求下列函数的定义域:(1)H(x
14、)=f(x2+1);(2)G(x)=f(x+m)+f(xm)(m0).当堂练习:1 下列四组函数中,表示同一函数的是( )A B C D2函数的图象与直线交点的个数为( )A必有一个 B1个或2个 C至多一个 D可能2个以上3已知函数,则函数的定义域是( )A B C D4函数的值域是( )A B C D5对某种产品市场产销量情况如图所示,其中:表示产品各年年产量的变化规律;表示产品各年的销售情况下列叙述: ( )(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去;(2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产
15、、销情况均以一定的年增长率递增你认为较合理的是()A(1),(2),(3) B(1),(3),(4) C(2),(4) D(2),(3)6在对应法则中,若,则 , 6 7函数对任何恒有,已知,则 8规定记号“”表示一种运算,即. 若,则函数的值域是_9已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17则f(x)的解析式是 10函数的值域是 11 求下列函数的定义域 : (1) (2) 12求函数的值域13已知f(x)=x2+4x+3,求f(x)在区间t,t+1上的最小值g(t)和最大值h(t)ABCD14在边长为2
16、的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,ABM的面积为S(1)求函数S=的解析式、定义域和值域;(2)求ff(3)的值必修1 第2章 函数概念与基本初等函数2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射考纲要求:理解函数的单调性、最大(小)值及其几何意义;结
17、合具体函数,了解函数奇偶性的含义;并了解映射的概念;会运用函数图像理解和研究函数的性质经典例题:定义在区间(,)上的奇函数f(x)为增函数,偶函数g(x)在0, )上图象与f(x)的图象重合.设ab0,给出下列不等式,其中成立的是 f(b)f(a)g(a)g(b) f(b)f(a)g(a)g(b) f(a)f(b)g(b)g(a) f(a)f(b)g(b)g(a)A BCD当堂练习: 1已知函数f(x)=2x2-mx+3,当时是增函数,当时是减函数,则f(1)等于 ( ) A-3B13 C7 D含有m的变量 2函数是( )A 非奇非偶函数 B既不是奇函数,又不是偶函数奇函数 C 偶函数 D 奇
18、函数3已知函数(1), (2),(3)(4),其中是偶函数的有( )个A1 B2 C3 D4 4奇函数y=f(x)(x0),当x(0,+)时,f(x)=x1,则函数f(x1)的图象为 ( )5已知映射f:AB,其中集合A=-3,-2,-1,1,2,3,4,集合B中的元素都是A中元素在映射f下的象,且对任意的,在B中和它对应的元素是,则集合B中元素的个数是( )A4 B5 C6 D76函数在区间0, 1上的最大值g(t)是7 已知函数f(x)在区间上是减函数,则与的大小关系是 8已知f(x)是定义域为R的偶函数,当x0时, f(x)是增函数,若x10,且,则和的大小关系是 9如果函数y=f(x+
19、1)是偶函数,那么函数y=f(x)的图象关于_对称10点(x,y)在映射f作用下的对应点是,若点A在f作用下的对应点是B(2,0),则点A坐标是 13. 已知函数,其中,(1)试判断它的单调性;(2)试求它的最小值14已知函数,常数。(1)设,证明:函数在上单调递增;(2)设且的定义域和值域都是,求的最大值13.(1)设f(x)的定义域为R的函数,求证: 是偶函数; 是奇函数.(2)利用上述结论,你能把函数表示成一个偶函数与一个奇函数之和的形式14. 在集合R上的映射:,.(1)试求映射的解析式;(2)分别求函数f1(x)和f2(z)的单调区间;(3) 求函数f(x)的单调区间. 必修1 第2
20、章 函数概念与基本初等函数2.1.3单元测试1 设集合P=,Q=,由以下列对应f中不能构成A到B的映射的是 ( )A B C D 2下列四个函数: (1)y=x+1; (2)y=x+1; (3)y=x2-1; (4)y=,其中定义域与值域相同的是( ) A(1)(2) B(1)(2)(3) C2)(3) D(2)(3)(4)3已知函数,若,则的值为( )A10 B -10 C-14 D无法确定4设函数,则的值为( )Aa Bb Ca、b中较小的数 Da、b中较大的数5已知矩形的周长为1,它的面积S与矩形的长x之间的函数关系中,定义域为( )A B C D 6已知函数y=x2-2x+3在0,a(
21、a0)上最大值是3,最小值是2,则实数a的取值范围是( )A0a1 B0f(-1) Bf(-1)f(-2) Cf(1)f(2) Df(-2)f(2)6计算. 7设,求8已知是奇函数,则= 9函数的图象恒过定点 10若函数的图象不经过第二象限,则满足的条件是 11先化简,再求值: (1),其中;(2) ,其中 12(1)已知x-3,2,求f(x)=的最小值与最大值(2)已知函数在0,2上有最大值8,求正数a的值(3)已知函数在区间-1,1上的最大值是14,求a的值13求下列函数的单调区间及值域:(1) ; (2);(3)求函数的递增区间14已知(1)证明函数f(x)在上为增函数;(2)证明方程没
22、有负数解必修1 第2章 函数概念与基本初等函数2.3对数函数重难点:理解并掌握对数的概念以及对数式和指数式的相互转化,能应用对数运算性质及换底公式灵活地求值、化简;理解对数函数的定义、图象和性质,能利用对数函数单调性比较同底对数大小,了解对数函数的特性以及函数的通性在解决有关问题中的灵活应用考纲要求:理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用;理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点;知道对数函数是一类重要的函数模型;了解指数函数与对数函数互为反函数经典例题:已知f(logax)=,其中a0,且a1(1)
23、求f(x);(2)求证:f(x)是奇函数;(3)求证:f(x)在R上为增函数当堂练习:1若,则( ) A B C D2设表示的小数部分,则的值是( ) A B C0 D3函数的值域是( )A B0,1 C0, D04设函数的取值范围为( )A(1,1) B(1,+) C D5已知函数,其反函数为,则是( )A奇函数且在(0,)上单调递减B偶函数且在(0,)上单调递增C奇函数且在(-,0)上单调递减D偶函数且在(-,0)上单调递增6计算= 7若2.5x=1000,0.25y=1000,求 8函数f(x)的定义域为0,1,则函数的定义域为 9已知y=loga(2ax)在0,1上是x的减函数,则a的
24、取值范围是 10函数图象恒过定点,若存在反函数,则的图象必过定点 11若集合x,xy,lgxy0,|x|,y,则log8(x2y2)的值为多少 12(1) 求函数在区间上的最值(2)已知求函数的值域 13已知函数的图象关于原点对称 (1)求m的值; (2)判断f(x) 在上的单调性,并根据定义证明14已知函数f(x)=x21(x1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称(1)求函数y=g(x)的解析式及定义域M;(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1,x2都有|h(x1)h(x2)|a|x1x2|成立,则称函数y=h(
25、x)为A的利普希茨类函数试证明:y=g(x)是M上的利普希茨类函数必修1 第2章 函数概念与基本初等函数2.4幂函数重难点:掌握常见幂函数的概念、图象和性质,能利用幂函数的单调性比较两个幂值的大小考纲要求:了解幂函数的概念;结合函数的图像,了解他们的变化情况经典例题:比较下列各组数的大小:(1)1.5,1.7,1;(2)(),(),1.1;(3)3.8,3.9,(1.8);(4)31.4,51.5.当堂练习:1函数y(x22x)的定义域是()Ax|x0或x2B(,0)(2,)C(,0)2,)D(0,2)3函数y的单调递减区间为()A(,1)B(,0)C0,D(,)3如图,曲线c1, c2分别是
26、函数yxm和yxn在第一象限的图象,那么一定有()Anm0 Bmnn0 Dnm04下列命题中正确的是( )A当时,函数的图象是一条直线 B幂函数的图象都经过(0,0),(1,1)两点 C幂函数的 图象不可能在第四象限内D若幂函数为奇函数,则在定义域内是增函数5下列命题正确的是( )A 幂函数中不存在既不是奇函数又不是偶函数的函数B 图象不经过(1,1)为点的幂函数一定不是偶函数 C 如果两个幂函数的图象具有三个公共点,那么这两个幂函数相同 D 如果一个幂函数有反函数,那么一定是奇函数6用“”连结下列各式: , 7函数y在第二象限内单调递增,则m的最大负整数是_ _8幂函数的图象过点(2,),
27、则它的单调递增区间是 9设x(0, 1),幂函数y的图象在yx的上方,则a的取值范围是 10函数y在区间上 是减函数11试比较的大小12讨论函数yx的定义域、值域、奇偶性、单调性。13一个幂函数yf (x)的图象过点(3, ),另一个幂函数yg(x)的图象过点(8, 2), (1)求这两个幂函数的解析式; (2)判断这两个函数的奇偶性; (3)作出这两个函数的图象,观察得f (x)0, a1)4下列函数中,定义域和值域都不是(,)的是( )Ay3x By3x Cyx2 Dylog 2x5若指数函数y=ax在1,1上的最大值与最小值的差是1,则底数a等于A B C D6当0ab(1a)b B(1a)a(1b)b C(1a)b(1a) D(1a)a(1b)b7已知函数f(x)=,则ff()的值是( )A9 B C9 D8若0a1,f(x)|logax|,则下列各式中成立的是( )Af(2)f()f() Bf()f(2)f() Cf()f(2)f() Df()f()f(2)9在f1(x)=,f2(x)=x2,f3(x)=2x,f4(x)=logx四个函数中,当x1x21时,使f(x1)+f(x2)f()成立的函数是( )Af1(x)=x