《经典相似三角形练习题(附参考答案).docx》由会员分享,可在线阅读,更多相关《经典相似三角形练习题(附参考答案).docx(53页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、单元复习相似三角形经典题专练一解答题(共30小题)1如图,在ABC中,DEBC,EFAB,求证:ADEEFC2如图,梯形ABCD中,ABCD,点F在BC上,连DF与AB的延长线交于点G(1)求证:CDFBGF;(2)当点F是BC的中点时,过F作EFCD交AD于点E,若AB=6cm,EF=4cm,求CD的长3如图,点D,E在BC上,且FDAB,FEAC求证:ABCFDE4如图,已知E是矩形ABCD的边CD上一点,BFAE于F,试说明:ABFEAD5已知:如图所示,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点(
2、1)求证:BE=CD;AMN是等腰三角形;(2)在图的基础上,将ADE绕点A按顺时针方向旋转180,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延长ED交线段BC于点P求证:PBDAMN6如图,E是ABCD的边BA延长线上一点,连接EC,交AD于点F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明7如图,在43的正方形方格中,ABC和DEF的顶点都在边长为1的小正方形的顶点上(1)填空:ABC=_,BC=_;(2)判断ABC与DEC是否相似,并证明你的结论8如图,已知矩形ABCD的边长AB=3cm,
3、BC=6cm某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与ACD相似?若存在,求t的值;若不存在,请说明理由9如图,在梯形ABCD中,若ABDC,AD=BC,对角线BD、AC把梯形分成了四个小三角形(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明10如图ABC中,D为A
4、C上一点,CD=2DA,BAC=45,BDC=60,CEBD于E,连接AE(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求BEC与BEA的面积之比11如图,在ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论12已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:ADMMCP14已知矩形ABCD,长BC=12cm
5、,宽AB=8cm,P、Q分别是AB、BC上运动的两点若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与BDC相似?15如图,在ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,PBQ与ABC相似16如图,ACB=ADC=90,AC=,AD=2问当AB的长为多少时,这两个直角三角形相似17已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点
6、N(不含A、B),使得CDM与MAN相似?若能,请给出证明,若不能,请说明理由18如图在ABC中,C=90,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与CBA相似?19如图所示,梯形ABCD中,ADBC,A=90,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似21如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动
7、;点Q沿DA边从点D开始向点A以1cm/s的速度移动如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与ABC相似22如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜请你在他们提供的测量工具中选出所需工具,设计一种测量方案(1)所需的测量工具是:_;(2)请在下图中画出测量示意图;(3
8、)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x24问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm乙组:如图2,测得学校旗杆的影长为900cm丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与O相切于点M请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG
9、的影长;需要时可采用等式1562+2082=2602)25阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC26如图,李华晚上在路灯下散步已知李华的身高AB=h,灯柱的高OP=OP=l,两灯柱之间的距离OO=m(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v227如图,分别以直角三角形ABC三
10、边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3(1)如图,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出
11、一个更具一般意义的结论28已知:如图,ABCADE,AB=15,AC=9,BD=5求AE29已知:如图RtABCRtBDC,若AB=3,AC=4(1)求BD、CD的长;(2)过B作BEDC于E,求BE的长30(1)已知,且3x+4z2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长参考答案与试题解析一解答题(共30小题)1如图,在ABC中,DEBC,EFAB,求证:ADEEFC考点:相似三角形的判定;平行线的性质。菁优网版权所有专题:证明题。分析:根据平行线的性质可知AED=C,A=FEC,根据相似三角形的判定定理可知A
12、DEEFC解答:证明:DEBC,DEFC,AED=C又EFAB,EFAD,A=FECADEEFC点评:本题考查的是平行线的性质及相似三角形的判定定理2如图,梯形ABCD中,ABCD,点F在BC上,连DF与AB的延长线交于点G(1)求证:CDFBGF;(2)当点F是BC的中点时,过F作EFCD交AD于点E,若AB=6cm,EF=4cm,求CD的长考点:相似三角形的判定;三角形中位线定理;梯形。菁优网版权所有专题:几何综合题。分析:(1)利用平行线的性质可证明CDFBGF(2)根据点F是BC的中点这一已知条件,可得CDFBGF,则CD=BG,只要求出BG的长即可解题解答:(1)证明:梯形ABCD,
13、ABCD,CDF=FGB,DCF=GBF,(2分)CDFBGF(3分)(2)解:由(1)CDFBGF,又F是BC的中点,BF=FC,CDFBGF,DF=GF,CD=BG,(6分)ABDCEF,F为BC中点,E为AD中点,EF是DAG的中位线,2EF=AG=AB+BGBG=2EFAB=246=2,CD=BG=2cm(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂3如图,点D,E在BC上,且FDAB,FEAC求证:ABCFDE考点:相似三角形的判定。菁优网版权所有专题:证明题。分析:由FDAB,FEAC,可知B=FDE,C=FED,根据三角形相似的
14、判定定理可知:ABCFDE解答:证明:FDAB,FEAC,B=FDE,C=FED,ABCFDE点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似4如图,已知E是矩形ABCD的边CD上一点,BFAE于F,试说明:ABFEAD考点:相似三角形的判定;矩形的性质。菁优网版权所有专题:证明题。分析:根据两角对应相等的两个三角形相似可解解答:证明:矩形ABCD中,ABC
15、D,D=90,(2分)BAF=AED(4分)BFAE,AFB=90AFB=D(5分)ABFEAD(6分)点评:考查相似三角形的判定定理,关键是找准对应的角5已知:如图所示,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点(1)求证:BE=CD;AMN是等腰三角形;(2)在图的基础上,将ADE绕点A按顺时针方向旋转180,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延长ED交线段BC于点P求证:PBDAMN考点:相似三角形的判定;全等三角形的判定;等腰
16、三角形的判定;旋转的性质。菁优网版权所有专题:几何综合题。分析:(1)因为BAC=DAE,所以BAE=CAD,又因为AB=AC,AD=AE,利用SAS可证出BAECAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证AMN是等腰三角形(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变(3)先证出ABMACN(SAS),可得出CAN=BAM,所以BAC=MAN(等角加等角和相等),又BAC=DAE,所以MAN=DAE=BAC,所以AMN,ADE和ABC都是顶角相等的等腰三角形,所以PBD=AMN,所以PBDAMN(两个角对应相等,两三角形相似)解答:(1)证明:BA
17、C=DAE,BAE=CAD,AB=AC,AD=AE,ABEACD,BE=CD由ABEACD,得ABE=ACD,BE=CD,M、N分别是BE,CD的中点,BM=CN又AB=AC,ABMACNAM=AN,即AMN为等腰三角形(2)解:(1)中的两个结论仍然成立(3)证明:在图中正确画出线段PD,由(1)同理可证ABMACN,CAN=BAMBAC=MAN又BAC=DAE,MAN=DAE=BACAMN,ADE和ABC都是顶角相等的等腰三角形PBD和AMN都为顶角相等的等腰三角形,PBD=AMN,PDB=ANM,PBDAMN点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的
18、性质,还有相似三角形的判定(两个角对应相等的两个三角形相似)6如图,E是ABCD的边BA延长线上一点,连接EC,交AD于点F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明考点:相似三角形的判定;平行四边形的性质。菁优网版权所有专题:开放型。分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:AEFBEC;AEFDCF;BECDCF解答:解:相似三角形有AEFBEC;AEFDCF;BECDCF(3分)如:AEFBEC在ABCD中,ADBC,1=B,2=3(6分)AEFBEC(7分)点评:考查了平行线的性质及相似三角形的判定定
19、理7如图,在43的正方形方格中,ABC和DEF的顶点都在边长为1的小正方形的顶点上(1)填空:ABC=135,BC=;(2)判断ABC与DEC是否相似,并证明你的结论考点:相似三角形的判定;正方形的性质。菁优网版权所有专题:证明题;网格型。分析:(1)观察可得:BF=FC=2,故FBC=45;则ABC=135,BC=2;(2)观察可得:BC、EC的长为2、,可得,再根据其夹角相等;故ABCDEC解答:解:(1)ABC=135,BC=;(2)相似;BC=,EC=;,;又ABC=CED=135,ABCDEC点评:解答本题要充分利用正方形的特殊性质注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、
20、正方形中的三角形的三边关系,可有助于提高解题速度和准确率8如图,已知矩形ABCD的边长AB=3cm,BC=6cm某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与ACD相似?若存在,求t的值;若不存在,请说明理由考点:相似三角形的判定;一元二次方程的应用;分式方程的应用;正方形的性质。菁优网版权所有专题:动点型。分析:(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系
21、,列方程求解即可,如本题中利用,AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在解答:解:(1)设经过x秒后,AMN的面积等于矩形ABCD面积的,则有:(62x)x=36,即x23x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,AMN的面积等于矩形ABCD面积的(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与ACD相似,由矩形ABCD,可得CDA=MAN=90,因此有或(5分)即,或(6分)解,得t=;解,得t=(7分
22、)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与ACD相似(8分)点评:主要考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程要掌握正方形和相似三角形的性质,才会灵活的运用注意:一般关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可9如图,在梯形ABCD中,若ABDC,AD=BC,对角线BD、AC把梯形分成了四个小三角形(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形
23、,并给出证明考点:相似三角形的判定;概率公式。菁优网版权所有专题:开放型。分析:(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;与,与相似;(2)利用相似三角形的判定定理即可证得解答:解:(1)任选两个三角形的所有可能情况如下六种情况:,(2分)其中有两组(,)是相似的选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择、证明在AOB与COD中,ABCD,CDB=DBA,DCA=CAB,AOBCOD(8分)选择、证明四边形ABCD是等腰梯形,DAB=CBA,在DAB与CBA中有AD=BC,DAB=CAB,AB=AB,DABCBA,(6分)ADO=BCO又DO
24、A=COB,DOACOB(8分)点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明还考查了相似三角形的判定10附加题:如图ABC中,D为AC上一点,CD=2DA,BAC=45,BDC=60,CEBD于E,连接AE(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求BEC与BEA的面积之比考点:相似三角形的判定;三角形的面积;含30度角的直角三角形。菁优网版权所有专题:综合题。分析:(1)根据直角三角形中30度角所对的直角边是斜边的一半,可
25、知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断ADEAEC;(3)要求BEC与BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作BEA的边BE边上的高即可求解解答:解:(1)AD=DE,AE=CECEBD,BDC=60,在RtCED中,ECD=30CD=2EDCD=2DA,AD=DE,DAE=DEA=30=ECDAE=CE(2)图中有三角形相似,ADEAEC;CAE=CAE,ADE=AEC,ADEAEC;(3)作AFBD的延长线于F,设AD=DE=x,在RtCED中,可得CE=,故AE=ECD=30在RtAEF中,AE
26、=,AED=DAE=30,sinAEF=,AF=AEsinAEF=点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广11如图,在ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论考点:相似三角形的判定;菱形的判定。菁优网版权所有专题:综合题。分析:(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为B=C=PMC=QMB,所以PMCQMBA
27、BC;(3)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形解答:解:(1)ABMP,QMAC,四边形APMQ是平行四边形,B=PMC,C=QMBAB=AC,B=C,PMC=QMBBQ=QM,PM=PC四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a(2)PMAB,PCMACB,QMAC,BMQBCA;(3)当点M中BC的中点时,四边形APMQ是菱形,点M是BC的中点,ABMP,QMAC,QM,PM是三角形ABC的中位线AB=AC,QM=PM=AB=AC又由(1)知四边形APMQ是平行四边形,平行四边形APMQ是菱形点评:此题主要考查了平行四边形的
28、判定和性质,中位线的性质,菱形的判定等知识点的综合运用12已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:ADMMCP考点:相似三角形的判定;正方形的性质。菁优网版权所有专题:证明题。分析:欲证ADMMCP,通过观察发现两个三角形已经具备一组角对应相等,即D=C,此时,再求夹此对应角的两边对应成比例即可解答:证明:正方形ABCD,M为CD中点,CM=MD=ADBP=3PC,PC=BC=AD=CMPCM=ADM=90,MCPADM点评:本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提
29、供的数据计算对应角的度数、对应边的比本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法13如图,已知梯形ABCD中,ADBC,AD=2,AB=BC=8,CD=10(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿BADC方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿CDA方向,向点A运动,过点Q作QEBC于点E若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒问:当点P在BA上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;在运动过程中,是否存在这样的
30、t,使得以P、A、D为顶点的三角形与CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由考点:相似三角形的判定;三角形三边关系;等腰三角形的判定;勾股定理;直角梯形。菁优网版权所有专题:动点型;开放型。分析:(1)求面积要先求梯形的高,可根据两底的差和CD的长,在直角三角形中用勾股定理进行求解,得出高后即可求出梯形的面积(2)PQ平分梯形的周长,那么AD+DQ+AP=BC+CQ+BP,已知了AD,BC的长,可以用t来表示出AP,
31、BP,CQ,QD的长,那么可根据上面的等量关系求出t的值本题要分三种情况进行讨论:一,当P在AB上时,即0t8,如果两三角形相似,那么C=ADP,或C=APD,那么在ADP中根据C的正切值,求出t的值二,当P在AD上时,即8t10,由于P,A,D在一条直线上,因此构不成三角形三,当P在CD上时,即10t12,由于ADC是个钝角,因此ADP是个钝角三角形因此不可能和直角CQE相似综合三种情况即可得出符合条件的t的值(3)和(2)相同也要分三种情况进行讨论:一,当P在AB上时,即0t8,等腰PDQ以DQ为腰,因此DQ=DP或DQ=PQ,可以通过构建直角三角形来表示出DP,PQ的长,然后根据得出的等
32、量关系来求t的值二,当P在AD上时,即8t10,由于BA+AD=CD=10,因此DP=DQ=10t,因此DP,DQ恒相等三,当P在CD上时,即10t12,情况同二综合三种情况可得出等腰三角形以DQ为腰时,t的取值解答:解:(1)过D作DHAB交BC于H点,ADBH,DHAB,四边形ABHD是平行四边形DH=AB=8;BH=AD=2CH=82=6CD=10,DH2+CH2=CD2DHC=90B=DHC=90梯形ABCD是直角梯形SABCD=(AD+BC)AB=(2+8)8=40(2)BP=CQ=t,AP=8t,DQ=10t,AP+AD+DQ=PB+BC+CQ,8t+2+10t=t+8+tt=38
33、当t=3秒时,PQ将梯形ABCD周长平分第一种情况:0t8若PADQEC则ADP=CtanADP=tanC=,t=若PADCEQ则APD=CtanAPD=tanC=,=t=第二种情况:8t10,P、A、D三点不能组成三角形;第三种情况:10t12ADP为钝角三角形与RtCQE不相似;t=或t=时,PAD与CQE相似第一种情况:当0t8时过Q点作QEBC,QHAB,垂足为E、HAP=8t,AD=2,PD=CE=t,QE=t,QH=BE=8t,BH=QE=tPH=tt=tPQ=,DQ=10t:DQ=DP,10t=,解得t=8秒:DQ=PQ,10t=,化简得:3t252t+180=0解得:t=,t=
34、8(不合题意舍去)t=第二种情况:8t10时DP=DQ=10t当8t10时,以DQ为腰的等腰DPQ恒成立第三种情况:10t12时DP=DQ=t10当10t12时,以DQ为腰的等腰DPQ恒成立综上所述,t=或8t10或10t12时,以DQ为腰的等腰DPQ成立点评:本题主要考查了梯形的性质以及相似三角形的判定和性质等知识点,要注意(2)中要根据P,Q的不同位置,进行分类讨论,不要漏解14已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为
35、顶点的三角形与BDC相似?考点:相似三角形的判定;矩形的性质。菁优网版权所有专题:几何动点问题;分类讨论。分析:要使以P、B、Q为顶点的三角形与BDC相似,则要分两两种情况进行分析分别是PBQBDC或QBPBDC,从而解得所需的时间解答:解:设经x秒后,PBQBCD,由于PBQ=BCD=90,(1)当1=2时,有:,即;(2)当1=3时,有:,即,经过秒或2秒,PBQBCD点评:此题考查了相似三角形的判定及矩形的性质等知识点的综合运用15如图,在ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果
36、P、Q分别从A、B同时出发,问经过几秒钟,PBQ与ABC相似考点:相似三角形的判定;一元一次方程的应用。菁优网版权所有专题:动点型。分析:设经过t秒后,PBQ与ABC相似,根据路程公式可得AP=2t,BQ=4t,BP=102t,然后利用相似三角形的性质对应边的比相等列出方程求解即可解答:解:设经过秒后t秒后,PBQ与ABC相似,则有AP=2t,BQ=4t,BP=102t,当PBQABC时,有BP:AB=BQ:BC,即(102t):10=4t:20,解得t=2.5(s)(6分)当QBPABC时,有BQ:AB=BP:BC,即4t:10=(102t):20,解得t=1所以,经过2.5s或1s时,PB
37、Q与ABC相似(10分)解法二:设ts后,PBQ与ABC相似,则有,AP=2t,BQ=4t,BP=102t分两种情况:(1)当BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与ABC相似点评:本题综合了路程问题和三角形的问题,所以学生平时学过的知识要会融合起来16如图,ACB=ADC=90,AC=,AD=2问当AB的长为多少时,这两个直角三角形相似考点:相似三角形的判定。菁优网版权所有专题:分类讨论。分析:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那
38、么这两个直角三角形相似在RtABC和RtACD,直角边的对应需分情况讨论解答:解:AC=,AD=2,CD=要使这两个直角三角形相似,有两种情况:(1)当RtABCRtACD时,有=,AB=3;(2)当RtACBRtCDA时,有=,AB=3故当AB的长为3或3时,这两个直角三角形相似点评:本题考查相似三角形的判定识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比17已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得CDM与MAN相似?若能,请给出证明,若不
39、能,请说明理由考点:相似三角形的判定;正方形的性质。菁优网版权所有专题:探究型;分类讨论。分析:两个三角形都是直角三角形,还只需满足一对角对应相等或夹直角的两边对应成比例即可说明两个三角形相似若DM与AM对应,则CDM与MAN全等,N与B重合,不合题意;若DM与AN对应,则CD:AM=DM:AN,得AN=a,从而确定N的位置解答:证明:分两种情况讨论:若CDMMAN,则=边长为a,M是AD的中点,AN=a若CDMNAM,则边长为a,M是AD的中点,AN=a,即N点与B重合,不合题意所以,能在边AB上找一点N(不含A、B),使得CDM与MAN相似当AN=a时,N点的位置满足条件点评:此题考查相似
40、三角形的判定因不明确对应关系,所以需分类讨论18如图在ABC中,C=90,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与CBA相似?考点:相似三角形的判定。菁优网版权所有专题:综合题;动点型。分析:此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解解答:解:设经过x秒后,两三角形相似,则CQ=(82x)cm,CP=xcm,(1分)C=C=90,当或时,
41、两三角形相似(3分)(1)当时,x=;(4分)(2)当时,x=(5分)所以,经过秒或秒后,两三角形相似(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法19如图所示,梯形ABCD中,ADBC,A=90,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似考点:相似三角形的判定;梯形。菁优网版权所有专题:分类讨论。分析:此题考查了相似三角形的判定与性质,解题时要认真审题,选择适宜的判定方法解题时要注意一题多解的情况,要注意别漏解解答:解:(1)若点A,P,D分别与点B,C,P对应,即APDBCP,=,=,AP27AP+6=0,AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,=,又A=B=90,APDBCP当AP=6时,由BC=3,A