《小学六年级数学故事.doc》由会员分享,可在线阅读,更多相关《小学六年级数学故事.doc(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学六年级数学故事秦王暗点兵问题和韩信乱点兵问题,都是后人对物不知其数问题的一种故事化。 物不知其数问题出自一千六百年前我国古代数学名著孙子算经。原题为:今有物不知其数,三三数之 二,五五数之 三,七七数之 二,问物几何? 这道题的意思是:有一批物品,不知道有几件。如果三件三件地数,就会剩下两件;如果五件五件地数,就会剩下三件;如果七件七件地数,也会剩下两件。问:这批物品共有多少件? 变成一个纯粹的数学问题就是:有一个数,用3除余2,用5除余3,用7除余2.求这个数。 这个问题很简单:用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰
2、好被5除余3,所以23就是本题的一个答案。 这个问题之所以简单,是由于有被3除和被7除余数相同这个特殊性。如果没有这个特殊性,问题就不那么简单了,也更有趣儿得多。 我们换一个例子;韩信点一队士兵的人数,三人一组余两人,五人一组余三人,七人一组余四人。问:这队士兵至少有多少人? 这个题目是要求出一个正数,使之用3除余2,用5除余3,用7除余4,而且希望所求出的数尽可能地小。 如果一位同学从来没有接触过这类问题,也能利用试验加分析的办法一步一步地增加条件推出答案。 例如我们从用3除余2这个条件开始。满足这个条件的数是3n+2,其中n是非负整数。 要使3n+2还能满足用5除余3的条件,可以把n分别用1,2,3,代入来试。当n=1时,3n+2=5,5除以5不用余3,不合题意;当n=2时,3n+2=8,8除以5正好余3,可见8这个数同时满足用3除余2和用5除余3这两个条件。 最后一个条件是用7除余4.8不满足这个条件。我们要在8的基础上得到一个数,使之同时满足三个条件。 为此,我们想到,可以使新数等于8与3和5的一个倍数的和。因为8加上3与5的任何整数倍所得之和除以3仍然余2,除以5仍然余3.于是我们让新数为 8+15m,分别把m=1,2,代进去试验。当试到m=3时,得到8+15 m=53,53除以7恰好余4,因而53合乎题目要求。