《高二下学习知识重点情况总结.doc》由会员分享,可在线阅读,更多相关《高二下学习知识重点情况总结.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、,.数学选修2-2知识点总结一、导数1函数的平均变化率为注1:其中是自变量的改变量,可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。5、常见的函数导数和积分公式函数导函数不定积分06、常见的导数和定积分运算公式:若,均可导(可积),则有:和差的导数运算积的导数运算特别地:商的导数运算特别地:复合函数的导数微积分基本定理 (其中)和差
2、的积分运算特别地:积分的区间可加性6.用导数求函数单调区间的步骤:求函数f(x)的导数令0,解不等式,得x的范围就是递增区间.令0,解不等式,得x的范围,就是递减区间;注:求单调区间之前一定要先看原函数的定义域。7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。(2) 求函数f(x)的导数 (3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值8.利用导数求函数的最值的
3、步骤:求在上的最大值与最小值的步骤如下: 求在上的极值;将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。注:实际问题的开区间唯一极值点就是所求的最值点;9求曲边梯形的思想和步骤:分割近似代替求和取极限 (“以直代曲”的思想)10.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1 性质5 若,则推广: 推广:11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;(3) 当位
4、于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积 12物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。推理与证明知识点13.归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。14. 归纳推理的思维过程大致如图: 实验、观察概括、推广猜测一般性结论15.归纳推理的特点: 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实
5、验检验,因此,它不能作为数学证明的工具。归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。17.类比推理的思维过程 观察、比较联想、类推推测新的结论18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。19演绎推理的主要形式:三段论20.“三段论”可以表示为:大前题:M是P小前提:S
6、是M结论:S是P。 其中是大前提,它提供了一个一般性的原理;是小前提,它指出了一个特殊对象;是结论,它是根据一般性原理,对特殊情况做出的判断。21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。24反证法:是指从否定的结论出
7、发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。 26常见的“结论词”与“反义词”原结论词反义词原结论词反义词至少有一个一个也没有对所有的x都成立存在x使不成立至多有一个至少有两个对任意x不成立存在x使成立至少有n个至多有n-1个p或q且至多有n个至少有n+1个p且q或27.反证法的思维方法:正难则反28.归缪矛盾(1)与已知条件矛盾:(2)与已有公理、定理、定义矛盾; (3)自相矛盾29数学归纳法(
8、只能证明与正整数有关的数学命题)的步骤(1)证明:当n取第一个值时命题成立;(2)假设当n=k (kN*,且kn0)时命题成立,证明当n=k+1时命题也成立.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确注:常用于证明不完全归纳法推测所得命题的正确性的证明。数系的扩充和复数的概念知识点30.复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,叫实部, 叫虚部,数集叫做复数集。规定:a=c且b=d,强调:两复数不能比较大小,只有相等或不相等。31数集的关系:32.复数的几何意义:复数与平面内的点或有序实数对一一对应。33.复平面:根据复数相等的定义,任何一个复数,都可以由一个有
9、序实数对唯一确定。由于有序实数对与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。34.求复数的模(绝对值)与复数对应的向量的模叫做复数的模(也叫绝对值)记作。由模的定义可知:35.复数的加、减法运算及几何意义复数的加、减法法则:,则。注:复数的加、减法运算也可以按向量的加、减法来进行。复数的乘法法则:。复数的除法法则:其中叫做实数化因子36.共轭复数:两复数互为共轭复数,当时,它们叫做共轭虚数。常见的运算规律设是1的立方虚根,
10、则,选修2-3知识点总结第一章 计数原理1、分类加法计数原理:做一件事情,完成它有N类办法,在第一类办法中有M1种不同的方法,在第二类办法中有M2种不同的方法,在第N类办法中有MN种不同的方法,那么完成这件事情共有M1+M2+MN种不同的方法。 2、分步乘法计数原理:做一件事,完成它需要分成N个步骤,做第一 步有m1种不同的方法,做第二步有M2不同的方法,做第N步有MN不同的方法.那么完成这件事共有 N=M1M2.MN 种不同的方法。3、排列:从n个不同的元素中任取m(mn)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列4、排列数: 5、组合:从n个不同的元素中任取m
11、(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。6、组合数: 7、二项式定理:8、二项式通项公式9.二项式系数的性质:展开式的二项式系数是,可以看成以为自变量的函数,定义域是,(1)对称性与首末两端“等距离”的两个二项式系数相等()(2)增减性与最大值:当是偶数时,中间一项取得最大值;当是奇数时,中间两项,取得最大值(3)各二项式系数和:,令,则 第二章 随机变量及其分布知识点:(3) 随机变量:如果随机试验可能出现的结果可以用一个变量X来表示,并且X是随着试验的结果的不同而变化,那么这样的变量叫做随机变量 随机变量常用大写字母X、Y等或希腊字母 、等表示。(4) 离散型随
12、机变量:在上面的射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3、离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,. ,xi ,.,xn X取每一个值 xi(i=1,2,.)的概率P(=xi)Pi,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质 pi0, i =1,2, ; p1 + p2 +pn= 15、二点分布:如果随机变量X的分布列为:其中0p1,q=1-p,则称离散型随机变量X服从参数p的二点分布6、超几何分布:一般地, 设总数为N件的两类物品,其中一类有M件,从所有物品中任取n(
13、nN)件,这n件中所含这类物品件数X是一个离散型随机变量,则它取值为k时的概率为,其中,且7、 条件概率:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率.记作P(B|A),读作A发生的条件下B的概率8、 公式: 9、 相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。10、 n次独立重复事件:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n次独立重复试验中某个事件A发生的次数,A发生次数是一个随机变量如果在一次试验中某事件发生的概率是p,事件A不发生的概率为q=1-p,那么在n次独立重复试
14、验中 (其中 k=0,1, ,n,q=1-p )于是可得随机变量的概率分布如下:这样的随机变量服从二项分布,记作B(n,p) ,其中n,p为参数12、数学期望:一般地,若离散型随机变量的概率分布为则称 Ex1p1x2p2xnpn 为的数学期望或平均数、均值,数学期望又简称为期望是离散型随机变量。13、方差:D()=(x1-E)2P1+(x2-E)2P2 +.+(xn-E)2Pn 叫随机变量的均方差,简称方差。14、集中分布的期望与方差一览:期望方差两点分布E=pD=pq,q=1-p二项分布, B(n,p)E=np D=qE=npq,(q=1-p)15、正态分布:若概率密度曲线就是或近似地是函数
15、 的图像,其中解析式中的实数是参数,分别表示总体的平均数与标准差则其分布叫正态分布,f( x )的图象称为正态曲线。 16、基本性质:曲线在x轴的上方,与x轴不相交曲线关于直线x=对称,且在x=时位于最高点.当时,曲线上升;当时,曲线下降并且当曲线向左、右两边无限延伸时,以x轴为渐近线,向它无限靠近 当一定时,曲线的形状由确定越大,曲线越“矮胖”,表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中当相同时,正态分布曲线的位置由期望值来决定.正态曲线下的总面积等于1.17、 3原则:从上表看到,正态总体在 以外取值的概率 只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.