资源描述
/*
有机化学
一.有机化合物的命名
1. 能够用系统命名法命名各种类型化合物:
包括烷烃,烯烃,炔烃,烯炔,脂环烃(单环脂环烃和多环置换脂环烃中的螺环烃和桥环烃),芳烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物(酰卤,酸酐,酯,酰胺),多官能团化合物(官能团优先顺序:-COOH>-SO3H>-COOR>-COX>-CN>-CHO>>C=O>-OH(醇)>-OH(酚)>-SH>-NH2>-OR>C=C>-C≡C->(-R>-X>-NO2),并能够判断出Z/E构型和R/S构型。
2. 根据化合物的系统命名,写出相应的结构式或立体结构式(伞形式,锯架式,纽曼投影式,Fischer投影式)。
立体结构的表示方法:
1)伞形式: 2)锯架式:
3) 纽曼投影式: 4)菲舍尔投影式:
5)构象(conformation)
(1) 乙烷构象:最稳定构象是交叉式,最不稳定构象是重叠式。
(2) 正丁烷构象:最稳定构象是对位交叉式,最不稳定构象是全重叠式。
(3) 环己烷构象:最稳定构象是椅式构象。一取代环己烷最稳定构象是e取代的椅 式构象。多取代环己烷最稳定构象是e取代最多或大基团处于e键上的椅式构象。
立体结构的标记方法
1. Z/E标记法:在表示烯烃的构型时,如果在次序规则中两个优先的基团在同一侧,为Z构型,在相反侧,为E构型。
2、 顺/反标记法:在标记烯烃和脂环烃的构型时,如果两个相同的基团在同一侧,则为顺式;在相反侧,则为反式。
3、 R/S标记法:在标记手性分子时,先把与手性碳相连的四个基团按次序规则排序。然后将最不优先的基团放在远离观察者,再以次观察其它三个基团,如果优先顺序是顺时针,则为R构型,如果是逆时针,则为S构型。
注:将伞状透视式与菲舍尔投影式互换的方法是:先按要求书写其透视式或投影式,然后分别标出其R/S构型,如果两者构型相同,则为同一化合物,否则为其对映体。
二. 有机化学反应及特点
1. 反应类型
A
还原反应(包括催化加氢):烯烃、炔烃、环烷烃、芳烃、卤代烃
氧化反应:烯烃的氧化(高锰酸钾氧化,臭氧氧化,环氧化);炔烃高锰酸钾氧化,臭氧氧化;醇的氧化;芳烃侧链氧化,芳环氧化)
2. 有关规律
1) 马氏规律:亲电加成反应的规律,亲电试剂总是加到连氢较多的双键碳上。
2) 过氧化效应:自由基加成反应的规律,卤素加到连氢较多的双键碳上。
3) 空间效应:体积较大的基团总是取代到空间位阻较小的位置。
4) 定位规律:芳烃亲电取代反应的规律,有邻、对位定位基,和间位定位基。
5) 查依切夫规律:卤代烃和醇消除反应的规律,主要产物是双键碳上取代基较多的烯烃。
6) 休克尔规则:判断芳香性的规则。存在一个环状的大π键,成环原子必须共平面或接近共平面,π电子数符合4n+2规则。
7) 霍夫曼规则:季铵盐消除反应的规律,只有烃基时,主要产物是双键碳上取代基较少的烯烃(动力学控制产物)。当β-碳上连有吸电子基或不饱和键时,则消除的是酸性较强的氢,生成较稳定的产物(热力学控制产物)。
8) 基团的“顺序规则”
3. 反应中的立体化学
烷烃:
烷烃的自由基取代:外消旋化
烯烃:
烯烃的亲电加成:
溴,氯,HOBr(HOCl),羟汞化-脱汞还原反应-----反式加成
其它亲电试剂:顺式+反式加成
烯烃的环氧化,与单线态卡宾的反应:保持构型
烯烃的冷稀KMnO4/H2O氧化:顺式邻二醇
烯烃的硼氢化-氧化:顺式加成
烯烃的加氢:顺式加氢
环己烯的加成(1-取代,3-取代,4-取代)
炔烃:
选择性加氢:
Lindlar催化剂-----顺式烯烃
Na/NH3(L)-----反式加氢
亲核取代:
SN1:外消旋化的同时构型翻转
SN2:构型翻转(Walden翻转)
消除反应:
E2,E1cb: 反式共平面消除。
环氧乙烷的开环反应:反式产物
四.概念、物理性质、结构稳定性、反应活性
(一).概念
1. 同分异构体
2. 试剂
亲电试剂:
简单地说,对电子具有亲合力的试剂就叫亲电试剂(electrophilic reagent)。亲电试剂一般都是带正电荷的试剂或具有空的p轨道或d轨道,能够接受电子对的中性分子, 如:H+、Cl+、Br+、RCH2+、CH3CO+、NO2+、+SO3H、SO3、BF3、AlCl3等,都是亲电试剂。
亲核试剂:
对电子没有亲合力,但对带正电荷或部分正电荷的碳原子具有亲合力的试剂叫亲核试剂(nucleophilic reagent)。亲核试剂一般是带负电荷的试剂或是带有未共用电子对的中性分子,如:OH-、HS-、CN-、NH2-、RCH2-、RO-、RS-、PhO-、RCOO-、
X-、H2O、ROH、ROR、NH3、RNH2等,都是亲核试剂。
自由基试剂:
Cl2、Br2是自由基引发剂,此外,过氧化氢、过氧化苯甲酰、偶氮二异丁氰、过硫酸铵等也是常用的自由基引发剂。少量的自由基引发剂就可引发反应,使反应进行下去。
3. 酸碱的概念
布朗斯特酸碱:质子的给体为酸,质子的受体为碱。
Lewis酸碱:电子的接受体为酸,电子的给与体为碱。
4. 共价键的属性
键长、键角、键能、键矩、偶极矩。
5. 杂化轨道理论
sp3、sp2、sp杂化。
6. 旋光性
平面偏振光:
手性:
手性碳:
旋光性:
旋光性物质(光学活性物质),左旋体,右旋体:
内消旋体、外消旋体,两者的区别:
对映异构体,产生条件:
非对映异构体:
苏式,赤式:
差向异构体:
Walden翻转:
7. 电子效应
1) 诱导效应
2) 共轭效应(π-π共轭,p-π共轭,σ-p 超2共轭,σ-π超共轭。
3) 空间效应
8. 其它
内型(endo), 外型(exo):
顺反异构体,产生条件:
烯醇式:
(二). 物理性质
1. 沸点高低的判断?
不同类型化合物之间沸点的比较;
同种类型化合物之间沸点的比较。
2. 熔点,溶解度的大小判断?
3. 形成有效氢键的条件,形成分子内氢键的条件:
(三). 稳定性判断
1. 烯烃稳定性判断
R2C=CR2 > R2C=CHR > RCH=CHR(E-构型)> RCH=CHR(Z-构型)
> RHC=CH2 >CH2=CH2
2. 环烷烃稳定性判断
3. 开链烃构象稳定性
4. 环己烷构象稳定性
5. 反应中间体稳定大小判断(碳正离子,碳负离子,自由基)
碳正离子的稳性顺序:
自由基稳定性顺序:
碳负离子稳定性顺序:
6. 共振极限结构式的稳定性判断(在共振杂化体中贡献程度):
(四)酸碱性的判断
1. 不同类型化合物算碱性判断
2. 液相中醇的酸性大小
3. 酸性大小的影像因素(吸电子基与推电子基对酸性的影响):
(五)反应活性大小判断
1. 烷烃的自由基取代反应
X2的活性:F2 >Cl2 >Br2 >I2
选择性:F2 < Cl2 < Br2< I2
2. 烯烃的亲电加成反应活性
R2C=CR2 > R2C=CHR> RCH=CHR > RCH=CH2 > CH2=CH2 > CH2=CHX
3. 烯烃环氧化反应活性
R2C=CR2 > R2C=CHR> RCH=CHR > RCH=CH2 > CH2=CH2
4. 烯烃的催化加氢反应活性:
CH2=CH2 > RCH=CH2 >RCH=CHR > R2C=CHR > R2C=CR2
5. Diles-Alder反应
双烯体上连有推电子基团(349页),亲双烯体上连有吸电子基团,有利于反应进行。
例如: 下列化合物
A. ; B. ; C. ; D.
与异戊二烯进行Diels-Alder反应的活性强弱顺序为: > > > 。
6. 卤代烃的亲核取代反应
SN1 反应:
SN2 反应:
成环的SN2反应速率是:
v五元环 > v六元环 > v中环,大环 > v三元环 > v四元环
7. 消除反应
卤代烃碱性条件下的消除反应-----E2消除
RI > RBr > RCl
醇脱水-----主要E1
8. 芳烃的亲电取代反应
芳环上连有活化苯环的邻对位定位基(给电子基)-------反应活性提高
芳环上连有钝化苯环的间位定位基(吸电子基)或邻对位定位基-------反应活性下降。
例如:
下列芳香族化合物:
A. B. C. D.
硝化反应的相对活性次序为 > > > 。
例如: 萘环的
A. α—位; B. β—位 ; C. 氯苯 ; D. 苯
在亲电取代反应中相对活性次序为为 > > > 。
例如:下列各化合物中,最容易与浓硫酸发生磺化反应的是( )。
A. ; B. ; C. ; D.
(六)其它
1. 亲核性的大小判断: 2. 试剂的碱性大小:3. 芳香性的判断:
4. 定位基定位效应强弱顺序:
邻、对位定位基:-O->-N(CH3)2>-NH2>-OH>-OCH3>-NHCOCH3>-R >-OCOCH3>-C6H5>-F>-Cl>-Br>-I
间位定位基:-+NH3>-NO2>-CN>-COOH>-SO3H>-CHO>-COCH3>-COOCH3>-CONH2
五、活性中间体与反应类型、反应机理
反应机理:
1. 自由基取代反应机理
中间体:自由基
反应类型:烷烃的卤代,烯烃、芳烃的α-H卤代。
2. 自由基加成反应机理
中间体:自由基:
反应类型:烯烃、炔烃的过氧化效应。
3. 亲电加成反应机理
中间体:环鎓离子(溴鎓离子,氯鎓离子)
反应类型:烯烃与溴,氯,次卤酸的加成
中间体:碳正离子,易发生重排。
反应类型:烯烃的其它亲电加成(HX,H2O,H2SO4,B2H6,羟汞化-去汞还原反应)、炔烃的亲电加成,小环烷烃的开环加成,共轭二烯烃的亲电加成。
或环鎓离子):
4. 亲电取代反应机理:
中间体:σ-络合物(氯代和溴代先生成π络合物)
反应类型:芳烃亲电取代反应(卤代,硝化,磺化,烷基化,酰基化,氯甲基化)。
5. 亲核加成反应机理:
中间体:碳负离子
反应类型:炔烃的亲核加成
6. 亲核取代反应机理:
SN1反应
中间体:碳正离子,易发生重排。
反应类型:卤代烃和醇的亲核取代(主要是3),醚键断裂反应(3烃基生成的醚)。
SN2反应
中间体:无(经过过渡态直接生成产物)
反应类型:卤代烃和醇的亲核取代(主要是1),分子内的亲核取代,醚键断裂反应(1烃基生成的醚,酚醚),环氧乙烷的开环反应。
7. 消除反应反应机理
E1机理:
中间体:碳正离子,易发生重排。
反应类型:醇脱水,3RX在无碱性试剂条件下在污水乙醇中的消除反应。
E2机理:
中间体:无(直接经过过渡态生成烯烃)
反应类型:RX的消除反应
E1cb机理:
中间体:碳负离子
反应类型:邻二卤代烷脱卤素。
重排反应机理:(rearrangement)
重排反应规律:由不稳定的活性中间体重排后生成较稳定的中间体;或由不稳定的反应物重排成较稳定的产物。
1、 碳正离子重排
(1) 负氢1,2-迁移:
(2) 烷基1,2-迁移:
(3) 苯基1,2-迁移:
频哪醇重排:
在频哪醇重排中,基团迁移优先顺序为:Ar>R>H
(4) 变环重排:
(5) 烯丙位重排:碱性水解
2、其它重排
(1) 质子1,3-迁移(互变异构现象)
六、鉴别与分离方法
七、推导结构
1. 化学性质:
烯烃的高锰酸钾氧化; 烯烃的臭氧化反应; 芳烃的氧化; 邻二醇的高碘酸氧化
2. 光波谱性质:
红外光谱:
3650~2500cm-1 O—H,N—H伸缩振动
3300~3000cm-1 —C≡C—H(3300),C=C—H(3100),Ar—H(3030) 伸缩振动
3000~2700cm-1 —CH3,—CH2,次甲基,—CHO(2720,2820) 伸缩振动
1870~1650cm-1 C=O ( 酸、醛、酮、酰胺、酯、酸酐)伸缩振动
1690~1450cm-1 C=C,苯环骨架伸缩振动
1475~1300cm-1 —CH3,—CH2,次甲基面内弯曲振动
1000~670cm-1 C=C—H,Ar—H,—CH2 的 面外弯曲振动
核磁共振谱:
偶合裂分的规律:n+1规律
一组化学等价的质子有n个相邻的全同氢核存在时,其共振吸收峰将被裂分为n+1个,这就是n+1规律。按照n+1规律裂分的谱图叫做一级谱图。在一级谱图中
具体的推到方法:
1).不饱和度的计算
W(不饱和度)= 1/2(2 + 2n4 + n3 - n1)
n41、n3、n1分别表示分子中四价、三价和一价元素的原子个数。
如果W=1,表明该化合物含一个不饱和键或是环烷烃;
W=2,表明该化合物含两个C=C双键,或含一个C≡C三键等;
W≥4,表明该化合物有可能含有苯环。
2). 红外光谱观察官能团区域
(1). 先观察是否存在C=O(1820~1660cm-1, s)
(2). 如果有C=O, 确定下列状况.
羧酸: 是否存在O-H(3400~2400cm-1, 宽峰, 往往与C-H重叠)
酰胺: 是否存在N-H(3400cm-1附近有中等强度吸收; 有时是同
等强度的两个吸收峰
酯: 是否存在C-O(1300~1000cm-1有强吸收)
酸酐: 1810和1760cm-1附近有两个强的C=O吸收
醛: 是否存在O=C-H(2850和2750附近有两个弱的吸收)
酮: 没有前面所提的吸收峰
(3). 如果没有C=O, 确定下列状况.
醇、酚: 是否存在O-H(3400~3300cm-1, 宽峰; 1300~1000cm-1附近的C-O吸收)
胺: 是否存在N-H(3400cm-1附近有中等强度吸收; 有时是同
等强度的两个吸收
醚: 是否存在C-O(1300~1000cm-1有强吸收, 并确认
3400~3300cm-1附近是否有O-H吸收峰)
(4).观察是否有C=C或芳环
C=C: 1650cm-1附近有弱的吸收
芳环: 1600~1450cm-1范围内有几个中等或强吸收
结合3100~3000cm-1的C-H伸缩振动, 确定C=C或芳环。
3)分析核磁共振谱图
(1) 根据化学位移(δ)、偶合常数(J)与结构的关系,识别一些强单峰和特征峰。如:下列孤立的甲基和亚甲基质子信号,极低磁场(δ10~16)出现的羧基,醛基和形成分子内氢键的羟基信号。
(2). 采用重水交换的方法识别-OH、-NH2、-COOH上的活泼氢。如果加重水后相应的信号消失,则可以确定此类活泼氢的存在。
(3) 如果δ在6.5~8.5ppm范围内有强的单峰或多重峰信号,往往是苯环的质子信号,再根据这一区域的质子数目和峰型,可以确定苯环上取代基数目和取代基的相对位置。
(4). 解析比较简单的多重峰(一级谱),根据每个组峰的化学位移及其相应的质子数目对该基团进行推断,并根据n+1规律估计其相邻的基团。
(5). 根据化学位移和偶合常数的分析,推出若干个可能的结构单元,最后组合可能的结构式。
综合各种分析,推断分子的结构并对结论进行核对。
有机化学阶段复习(烷烃~芳烃)2009-4-15
一、命名或写出下列化合物的结构式(必要时标出顺、反,R、S构型)
1、 2、
3、 5-甲基螺[2.4]庚烷 4、 反-1,2-二甲基环己烷 (优势构象)
5、 6. 5-硝基-1-萘酚
答:
1、 4-异丙基辛烷 2、顺-3,4-二甲基-3-辛烯
3、 4、
5、 (S)-a-溴代乙苯 6.
答:
1 : 2, 3, 5-三甲基己烷 2. 3, 5-二甲基-3-庚烯
答:
1. 2,3,4,5-四甲基己烷 2. 2-乙基-1-丁烯
3. 2,2,7,7-四甲基-3,5-辛二炔
1、 2、
3、顺-1,2-二甲基环己烷 (优势构象)
4、
答:
1、 2-甲基-3-乙基己烷 2、(Z)-1-氯-2-溴丙烯
3、
4、(R)-a-溴代乙苯
二、选择题(选择所有符合条件的答案)
1. 下列化合物中的碳为SP2杂化的是:( B、D )。
A:乙烷 B:乙烯 C:乙炔 D:苯
2. 某烷烃的分子式为C5H12,其一元氯代物有三种,那么它的结构为:( A )。
A: 正戊烷 B: 异戊烷 C:新戊烷 D:不存在这种物质
3. 下列化合物具有芳香性的有哪些?( A、C、D )
A:环戊二烯负离子 B:[10]轮烯 C: D:
4.下列哪些化合物能形成分子内氢键?( A、B )
A:邻氟苯酚 B:邻硝基苯酚 C:邻甲苯酚 D:对硝基苯酚
5.下列化合物不能发生傅列德尔-克拉夫茨酰基化反应的有(B、C、D )。
A:噻吩 B:9,10-蒽醌 C:硝基苯 D:吡啶
6.下列化合物中的碳为SP杂化的是:( C )。
A:乙烷 B:乙烯 C:乙炔 D:苯
7. 某烷烃的分子式为C5H12,只有二种二氯衍生物,那么它的结构为:( C )。
A: 正戊烷 B: 异戊烷 C:新戊烷 D:不存在这种物质
8. 下列化合物具有芳香性的有哪些?( A、B、D )
A:[18]轮烯 B:环庚三烯正离子 C: D:
9. CH3CCH和CH3CH=CH2可以用下列哪些试剂来鉴别?( B、C )
A:托伦斯试剂 B:Ag(NH3)2NO3 C: Cu(NH3)2Cl D:酸性KMnO4
理化性质比较题
1. 将下列游离基按稳定性由大到小排列:
答案: 稳定性 c > a > b
2. 两瓶没有标签的无色液体,一瓶是正己烷,另一瓶是1-己烯,用什么简单方法可以给它们贴上正确的标签?
答案:
3. 下列化合物中,哪些可能有芳香性?
答案: b , d有芳香性
4. 根据S与O的电负性差别,H2O与H2S相比,哪个有较强的偶极-偶极作用力或氢键?
答案:电负性 O > S , H2O与H2S相比,H2O有较强的偶极作用及氢键
5. 将下列碳正离子按稳定性由大至小排列:
答案: 稳定性:
6.写出可能有的旋光异构体的投影式,用R,S标记法命名,并注明内消旋体或外消旋体。
2-溴代-1-丁醇
答案:
7.用简便且有明显现象的方法鉴别下列化合物
答案:Ag(NH3)2+
三、完成下列化学反应(只要求写出主要产物或条件,
( B )
(1) H2/Ni
(2) CH≡CNa
( A )
1. CH2=CH-CH3 CH2=CH-CH2Cl ( C )
H2O
Hg2+, H2SO4
( D )
完成下列各反应式(1)(把正确答案填在题中括号内)
五、分析下列反应历程,简要说明理由
H+
170℃
答:
扩环
重排
—H2O
H+
一级碳正离子重排为三级碳正离子,五元环扩环重排为六元环(环张力降低),这样生成的碳正离子稳定。
—H+
2. 写出下列反应的历程
答案;
+ HCl
解:反应中出现了重排产物,因此反应是经过碳正离子中间体进行的:
3
Cl—
2 + HCl
(Ⅲ)
(Ⅰ)
(Ⅱ)
负氢重排
碳正离子23
1
Cl—
(Ⅴ)
(Ⅳ)
首先:H+与(Ⅰ)反应,由于受(Ⅰ)中甲基的给电子效应的影响,使(Ⅰ)中C-1的电子云密度增加,H+与C-1结合得碳正离子(Ⅱ),(Ⅱ)与Cl—结合得(Ⅲ);(Ⅱ)为仲碳正离子,与甲基直接相连的碳上的氢以负氢形式转移,发生重排,得到更稳定的叔碳正离子(Ⅳ), (Ⅳ)与Cl—结合得(Ⅴ)。
六、指定原料合成(注意:反应过程中所用的有机溶剂、催化剂及无机原料可任选,在反应中涉及的其他中间有机物均要求从指定原料来制备)
1. 以萘为原料合成: 。
HNO3
H2SO4
H2SO4
165℃
解:
2. 以苯胺及两个碳的有机物为原料合成:
HNO3
.H2SO4
FeBr3
+ Br2
CH3COCl
解:
H3O+,D
或OH-,H2O
3.完成下列转化(必要试剂)
答案:
4.以四个碳原子及以下烃为原料合成: 。
解:CHCH + HCN CH2=CH-CN
磷钼酸铋
470℃
(CH2=CH-CH3 +NH3+3/2O2 CH2=CH-CN)
Cl2
CH2=CH-CH=CH2 + CH2=CH-CN
5。以苯为原料合成: 。
浓H2SO4
H+
NaOH
碱熔
浓H2SO4
解:
Cl2
FeCl3
H2O
D
路线一:先硝化,后氧化
路线二:先氧化,后硝化
路线二有两个缺点,(1)反应条件高,(2)有付产物,所以
路线一为优选路线。
七、结构推导
1. 分子式为C6H10的A及B,均能使溴的四氯化碳溶液褪色,并且经催化氢化得到相同的产物正己烷。A可与氯化亚铜的氨溶液作用产生红棕色沉淀,而B不发生这种反应。B经臭氧化后再还原水解,得到CH3CHO及HCOCOH(乙二醛)。推断A及B的结构,并用反应式加简要说明表示推断过程。
答案:
2. 分子式为C5H10的化合物A,与1分子氢作用得到C5H12的化合物。A在酸性溶液中与高锰酸钾作用得到一个含有4个碳原子的羧酸。A经臭氧化并还原水解,得到两种不同的醛。推测A的可能结构,用反应式加简要说明表示推断过程。
答案:
3. 溴苯氯代后分离得到两个分子式为C6H4ClBr的异构体A和B,将A溴代得到几种分子式为C6H3ClBr2的产物,而B经溴代得到两种分子式为C6H3ClBr2的产物C和D。A溴代后所得产物之一与C相同,但没有任何一个与D相同。推测A,B,C,D的结构式,写出各步反应。
答案:
转]有机化学鉴别方法《终极版》找了很久
有机化学鉴别方法的总结
1烷烃与烯烃,炔烃的鉴别方法是酸性高锰酸钾溶液或溴的ccl4溶液(烃的含氧衍生物均可以使高锰酸钾褪色,只是快慢不同)
2烷烃和芳香烃就不好说了,但芳香烃里,甲苯,二甲苯可以和酸性高锰酸钾溶液反应,苯就不行
3另外,醇的话,显中性
4酚:常温下酚可以被氧气氧化呈粉红色,而且苯酚还可以和氯化铁反应显紫色
5可利用溴水区分醛糖与酮糖
6醚在避光的情况下与氯或溴反应,可生成氯代醚或溴代醚。醚在光助催化下与空气中的氧作用,生成过氧化合物。
7醌类化合物是中药中一类具有醌式结构的化学成分,主要分为苯醌,萘醌,菲醌和蒽醌四种类型,具体颜色不同反应类型较多 一.各类化合物的鉴别方法
1.烯烃、二烯、炔烃:
(1)溴的四氯化碳溶液,红色腿去
(2)高锰酸钾溶液,紫色腿去。
2.含有炔氢的炔烃:
(1) 硝酸银,生成炔化银白色沉淀
(2) 氯化亚铜的氨溶液,生成炔化亚铜红色沉淀。
3.小环烃:三、四元脂环烃可使溴的四氯化碳溶液腿色
4.卤代烃:硝酸银的醇溶液,生成卤化银沉淀;不同结构的卤代烃生成沉淀的速度不同,叔卤代烃和烯丙式卤代烃最快,仲卤代烃次之,伯卤代烃需加热才出现沉淀。
5.醇:
(1) 与金属钠反应放出氢气(鉴别6个碳原子以下的醇);
(2) 用卢卡斯试剂鉴别伯、仲、叔醇,叔醇立刻变浑浊,仲醇放置后变浑浊,伯醇放置后也无变化。
6.酚或烯醇类化合物:
(1) 用三氯化铁溶液产生颜色(苯酚产生兰紫色)。
(2) 苯酚与溴水生成三溴苯酚白色沉淀。
7.羰基化合物:
(1) 鉴别所有的醛酮:2,4-二硝基苯肼,产生黄色或橙红色沉淀;
(2) 区别醛与酮用托伦试剂,醛能生成银镜,而酮不能;
(3) 区别芳香醛与脂肪醛或酮与脂肪醛,用斐林试剂,脂肪醛生成砖红色沉淀,而酮和芳香醛不能;
(4) 鉴别甲基酮和具有结构的醇,用碘的氢氧化钠溶液,生成黄色的碘仿沉淀。
8.甲酸:用托伦试剂,甲酸能生成银镜,而其他酸不能。
9.胺:区别伯、仲、叔胺有两种方法
(1)用苯磺酰氯或对甲苯磺酰氯,在NaOH溶液中反应,伯胺生成的产物溶于NaOH;仲胺生成的产物不溶于NaOH溶液;叔胺不发生反应。
(2)用NaNO2+HCl:
脂肪胺:伯胺放出氮气,仲胺生成黄色油状物,叔胺不反应。
芳香胺:伯胺生成重氮盐,仲胺生成黄色油状物,叔胺生成绿色固体。
10.糖:
(1) 单糖都能与托伦试剂和斐林试剂作用,产生银镜或砖红色沉淀;
(2) 葡萄糖与果糖:用溴水可区别葡萄糖与果糖,葡萄糖能使溴水褪色,而果糖不能。
(3)麦芽糖与蔗糖:用托伦试剂或斐林试剂,麦芽糖可生成银镜或砖红色沉淀,而蔗糖不能。
二.例题解析
例1.用化学方法鉴别丁烷、1-丁炔、2-丁炔。
分析:上面三种化合物中,丁烷为饱和烃,1-丁炔和2-丁炔为不饱和烃,用溴的四氯化碳溶液或高锰酸钾溶液可区别饱和烃和不饱和烃,1-丁炔具有炔氢而2-丁炔没有,可用硝酸银或氯化亚铜的氨溶液鉴别。因此,上面一组化合物的鉴别方法为:
例2.用化学方法鉴别氯苄、1-氯丙烷和2-氯丙烷。
分析:上面三种化合物都是卤代烃,是同一类化合物,都能与硝酸银的醇溶液反应生成卤化银沉淀,但由于三种化合物的结构不同,分别为苄基、二级、一级卤代烃,它们在反应中的活性不同,因此,可根据其反应速度进行鉴别。上面一组化合物的鉴别方法为:
例3.用化学方法鉴别下列化合物
苯甲醛、丙醛、2-戊酮、3-戊酮、正丙醇、异丙醇、苯酚
分析:上面一组化合物中有醛、酮、醇、酚四类,醛和酮都是羰基化合物,因此,首先用鉴别羰基化合物的试剂将醛酮与醇酚区别,然后用托伦试剂区别醛与酮,用斐林试剂区别芳香醛与脂肪醛,用碘仿反应鉴别甲基酮;用三氯化铁的颜色反应区别酚与醇,用碘仿反应鉴别可氧化成甲基酮的醇。鉴别方法可按下列步骤进行:
(1) 将化合物各取少量分别放在7支试管中,各加入几滴2,4-二硝基苯肼试剂,有黄色沉淀生成的为羰基化合物,即苯甲醛、丙醛、2-戊酮、3-戊酮,无沉淀生成的是醇与酚。
(2) 将4种羰基化合物各取少量分别放在4支试管中,各加入托伦试剂(氢氧化银的氨溶液),在水浴上加热,有银镜生成的为醛,即苯甲醛和丙醛,无银镜生成的是2-戊酮和3-戊酮。
(3) 将2种醛各取少量分别放在2支试管中,各加入斐林试剂(酒石酸钾钠、硫酸酮、氢氧化钠的混合液),有红色沉淀生成的为丙醛,无沉淀生成的是苯甲醛。
(4) 将2种酮各取少量分别放在2支试管中,各加入碘的氢氧化钠溶液,有黄色沉淀生成的为2-戊酮,无黄色沉淀生成的是3-戊酮。
(5) 将3种醇和酚各取少量分别放在3支试管中,各加入几滴三氯化铁溶液,出现兰紫色的为苯酚,无兰紫色的是醇。
(6) 将2种醇各取少量分别放在支试管中,各加入几滴碘的氢氧化钠溶液,有黄色沉淀生成的为异丙醇,无黄色沉淀生成的是丙醇。
/1.化学分析
(1)烃类
①烷烃、环烷烃 不溶于水,溶于苯、乙酸、石油醚,因很稳定且不和常用试剂反应,故常留待最后鉴别。
不与KMnO4反应,而与烯烃区别。
③烯烃 使Br2/CCl4(红棕色)褪色;使KMnO4/OH-(紫色)变成MnO2棕色沉淀;在酸中变成无色Mn2+。
④共轭双烯 与顺丁烯二酸酐反应,生成结晶固体。
⑤炔烃(-C≡C-)使Br2/CCl4(红棕色)褪色;使KMnO4/OH-(紫色)产生MnO2↓棕色沉淀,与烯烃相似。
⑥芳烃 与CHCl3+无水AlCl3作用起付氏反应,烷基苯呈橙色至红色,萘呈蓝色,菲呈紫色,蒽呈绿色,与烷烃环烷烃区别;用冷的发烟硫酸磺化,溶于发烟硫酸中,与烷烃相区别;不能迅速溶于冷的浓硫酸中,与醇和别的含氧化合物区别;不能使Br2/CCl4褪色,与烯烃相区别。
(2)卤代烃R—X(—Cl、—Br、—I)
在铜丝火焰中呈绿色,叫Beilstein试验,与AgNO3醇溶液生成AgCl↓(白色)、AgBr↓(淡黄色)、AgI↓(黄色)。叔卤代烷、碘代烷、丙烯型卤代烃和苄基卤立即起反应,仲卤代烃、伯卤代烃放置或加热起反应,乙烯型卤代烃不起反应。
(3)含氧化合物
①醇(R—OH) 加Na产生H2↑(气泡),含活性 H化合物也起反应。用RCOCl/H2SO4或酸酐可酯化产生香味,但限于低级羧酸和低级醇。使K2Cr2O7+H2SO4水溶液由透明橙色变为蓝绿色Cr3+(不透明),可用来检定伯醇和仲醇。用Lucas试剂(浓 HCl+ZnCl2)生成氯代烷出现浑浊,并区别伯、仲、叔醇。叔醇立即和Lucas试剂反应,仲醇5分钟内反应,伯醇在室温下不反应。加硝酸铵溶液呈黄至红色,而酚呈
NaOH)生成CHI3↓(黄色)。
②酚(Ar—OH) 加入1%FeCl3溶液呈蓝紫色[Fe(ArO)6]3-或其它颜色,酚、烯醇类化合物起此反应;用NaOH水溶液与NaHCO3水溶液,酚溶于NaOH水溶液,不溶于NaHCO3,与RCOOH区别;用Br2水生成 (白色,注意与苯胺区别)。
③醚(R—O—R) 加入浓H2SO4生成 盐、混溶,用水稀释可分层,与烷烃、卤代烃相区别(含氧有机物不能用此法区别)。
④酮 加入2,4-二硝基苯肼生成黄色沉淀;用碘仿反应(I2+NaOH)生成CHI3↓(黄色),鉴定甲基酮;用羟氨、氨基脲生成肟、缩氨基脲,测熔点。
⑤醛 用Tollens试剂Ag(NH3)2OH产生银镜Ag↓;用Fehling试剂2Cu2++4OH-或Benedict试剂生成Cu2O↓(红棕色);用Schiff试验品红醛试剂呈紫红色。
⑥羧酸 在NaHCO3水溶液中溶解放出CO2气体;也可利用活性H的反应鉴别。
酸上的醛基被氧化。
⑦羧酸衍生物 水解后检验产物。
(4)含氮化合物
利用其碱性,溶于稀盐酸而不溶于水,或其水溶性化合物能使石蕊变蓝。
①脂肪胺 采用Hinsberg试验
②芳香胺
芳香伯胺还可用异腈试验:
③苯胺 在Br2+H2O中生成 (白色)。 苯酚有类似现象。
(5)氨基酸 采用水合茚三酮试验
脯氨酸为淡黄色。多肽和蛋白质也有此呈色反应。
(6)糖类 ①淀粉、纤维素
需加SnCl2防止氧对有色盐的氧化。碳水化合物均为正性。
淀粉加入I2呈兰色。
②葡萄糖 加Fehling试剂或Benedict试剂产生Cu2O↓(红棕色),还原糖均有此反应;加Tollens试剂[Ag(NH3)2+OH-]产生银镜。
化学命名法
中国化学会有机化学命名原则,1980
一般规则
取代基的顺序规则
当主链上有多种取代基时,由顺序规则决定名称中基团的先后顺序。一般的规则是:
1.取代基的第一个原子质量越大,顺序越高;
2.如果第一个原子相同,那么比较它们第一个原子上连接的原子的顺序;如有双键或三键,则视为连接了2或3个相同的原子。
以次序最高的官能团作为主要官能团,命名时放在最后。其他官能团,命名时顺序越低名称越靠前。
主链或主环系的选取
以含有主要官能团的最长碳链作为主链,靠近该官能团的一端标
展开阅读全文
相关搜索