机械创新设计(设计实例论文资料).doc

举报
资源描述
,. 机械创新设计 说明书 设计题目:洗瓶机推瓶机构 设计组号: 院 系 专 业: 指导教师: 目录 1, 设计目的及意义 由于工业生产和社会生活的需要,大量的玻璃瓶、塑料瓶需要进行回收清洗后再利用,节省了大量制瓶洗所需要的费用同时也提高了工业生产的生产效率。然而就在此时也出现了回收后再清洗的问题。产品盛载是车间的最后一道关键工序,因此玻璃瓶的供应速度也就决定了总的生产效率的高低。从而产生了对洗瓶机设备的研究与改进工作。 随着啤酒市场不断地发展变化,酒瓶种类、标纸和粘接剂品种不断增加,特别是现在的头标铝箔纸的出现,给洗瓶设备和工艺提出了新的更高的要求在长期使用多种洗瓶机的过程中。为了适应现在啤酒回收瓶的洗涤要求,我们同该洗瓶机的制造厂家进行了广泛地讨论和研究,对洗瓶机适时地进行了一系列的技术改进。 洗瓶机器设备的出现并且运用到实际生产中,改变了人工刷洗的传统工艺,实现了自动化生产方式,达到了减少劳动力、节约费用、提高工作效率、增加企业经济效益之目的。并且得到了广大用户的支持和好评,而且使得化、制药、食品等行业的生产率产生了质的飞跃。 洗瓶机推瓶机构的原理方案分析: (1)功能分解: (2) 功能描述 原理解法 瓶子移动 外部推力;传送带传送等 清洗 刷子清洗;高压水清洗等 功能原理分析表 (3)求功能元解 洗瓶机推瓶机构形态学矩阵 功能元 功能元解 1 2 3 4 5 动力源 电动机 汽油机 柴油机 液动机 气动马达 移物传动 齿轮传动 蜗杆传动 带传动 链传动 清洗 毛巾清洗 高压水清洗 刷子清洗 2.设计题目 2.1推瓶机推瓶机构的改进设计 洗瓶机主要是由推瓶机构、导辊机构、转刷机构组成。待洗的瓶子放在两个同向转动的导辊上,导辊带动瓶子旋转。当推头M把瓶子推向前进时,转动着的刷子就把瓶子外面洗净。当前一个瓶子将洗刷完毕时,后一个待洗的瓶子已送入导辊待推。如图1所示。 图1 洗瓶机工作示意图 2, 原理方案设计 3.1功能分析 为了完成设计任务需要三个阶段:①通过组合机构使推头M以接近均匀的速度推瓶,平稳地接触和脱离瓶子,然后推头快速返回原位,准备第二个工作循环;②导辊及其上方的转动的刷子不停的转动,完成瓶子外围的清洗。 3.2功能原理分析 根据使用要求或工艺要求设计机构时,首先考虑的是采用什么功能原理来实现这些要求。显然,采用不同的功能原理,其所要求的运动规律设计必然也不同。 首先了解一下洗瓶机构: 附下图所示是洗瓶机有关部件的工作情况示意图。待洗的瓶子放在两个转动 的导辊上,导辊带动瓶子旋转。当推头M把瓶推向前进时,转动着的刷子就把瓶子外面洗净。当前一个瓶子将洗涮完毕时,后一个待洗的瓶子已进入导辊待推。 原始设计数据和设计要求: (1) 瓶子尺寸:大端直径D=80mm,长200mm,小端直径d=25mm,(如图2-2所示) (2) 推进距离l=600mm,推瓶机构应使推头M以接近均匀的速度推瓶,平衡地接触和脱离瓶子,然后,推头快速返回原位,准备第二个工作循环。 (3) 按生产率的要求,推程平均速度为v=50mm/s,返回的平均速度为工作行程三倍。 (4) 机构传力性能良好,结构紧凑,制造方便。 根据设计要求,推头M可走附下图所示轨迹,而且在l=600mm工作行程中作匀速运动,在其前后作变速运动,回程时有急回运动特性。对这种运动要求。通常, 要用若干个基本机构组合成的组合机构,各司其职,协调动作,才能实现。在选择机构时,一般先考虑选择满足轨迹要求的机构(基础机构),而沿轨迹运动时的速度 要求,则往往通过改变基础机构主动件的运动速度来满足。 图2-1工作行程示意图 图2-2瓶子规 在实际工作中,要设计的机器往往比较复杂,其使用要求或工艺要求往往需要 很多的功能原理组合 成一个总的功能原理 图2-3 工作示意图来完成,根据上诉,我们来 图2-3 工作示意图 分析一下洗瓶机是通过什么功能原理来实现它所要完成的工作的。 首先推瓶机构所采用的功能原理是用机械能迫使瓶子由工作台的一侧运动到另一侧,则要求有一个工作行程为L往返运动的推头,同时推头在工作过程中要匀速,回程时要快速,能够满足此运动规律可以有很多种,如可以设计成曲柄-四杆机构,或凸轮连杆机构等实现其往复运动来完成其工作。要运用此功能原理来满足其工作需要,在运动规律设计方面就要考虑用什么来带动曲柄连杆或凸轮连杆机构的转动,一般我们都用电机来完成此项转动功能。 其次是转辊机构所运用的是机械的转动规律,也是机械运动中比较简单的运动规律,只需要有一定的转动速度与推瓶机构、转辊机构相配合来实现洗瓶设备的整体工作功能。它是有两个长圆柱型导辊旋转,带动瓶子旋转并且由导辊的一侧移动到另一侧的,其中导辊只完成其中的旋转功能,移动功能是由推瓶机构来实现的。 最后我们要了解一下转刷机构所采用的功能原理,它与导辊机构相同运用的都是机械的转动规律,与其不同的是转刷机构的旋转要有很高的速度来完成其对瓶子外壁的清洗工作。知道了它的运动规律就要进一步了解它是由什么机构带动完成其所要求的功能的。推瓶机构、导辊机构和转刷机构都是由一台电机来提供所有的机械转动规律的,这就要求我们对它们深入分析、研究各构件之间的运动规律的联系,进而的设计出符合其联动规律的整体设备,来满足我们预期想要实现的目标。 3.3工作原理分析 洗瓶机是由推瓶机构、导辊机构和转刷机构共同来完成它的工作的。根据上面洗瓶机工作情况示意图,首先是由推瓶机构以均匀的速度将瓶子推上工作台(导辊),推头的往复运动使瓶子一个一个不间断的送上工作台进行清洗工作,由于瓶子是从静止到具有一定的速度,推头和瓶子之间必然存在着一定的冲击,所以就要考虑推头的材料不能是刚性材料,要用具有一定韧性的塑性材料以保证在工作过程中不至于将瓶子碰碎。第二,瓶子送到工作台的同时导辊已经进入了旋转的状态并且喷水机构也开始对瓶子进行喷水,使瓶子随着导辊的旋转进行圆周运动,安装在导辊上面旋转的转刷能够将瓶子的四周都能够清洗干净。 3.4原动机的选择 原动机是机械系统的驱动部分,按能量转换性质的不同分为第一类原动机和第二类原动机。其中第一类原动机分为:蒸汽机、柴油机、汽油机、水轮机、燃气轮机;第二类原动机分为:电动机、液动机、气动机。在这里我选择应用最为广泛的电动机为原动机,因为成本低、运转费用少、维护要求较少、功率适用范围广等优点。这里用转速为1440 r/min的电动机。 3.5系统运动方案构思 运动规律设计得不同,综合出的机构也就完全不同,这是容易理解的。但是不同的机构却可以实现同一运动规律,满足同样的使用要求,因此就需要从各种运动性能来评价这些机构,以便从中选择一个最优的机构。 根据上诉的推瓶机构的运动规律,对这种运动要求,若用单一的常用机构是不容易实现的,通常要把若干个基本机构组合,起来,设计组合机构。 在设计组合机构时,一般可首先考虑选择满足轨迹要求的机构(基础机构),而沿轨迹运动时的速度要求,则通过改变基础机构主动件的运动速度来满足,也就是让它与一个输出变速度的附加机构组合。 实现要求的机构方案有很多,可用多种机构组合来实现。如: 1.凸轮-铰链四杆机构方案 如3-1所示,铰链四杆机构的连杆2上点M走近似于所要求的轨迹,M点的速度由等速转动的凸轮通过构件3的变速转动来控制。由于此方案的曲柄1是从动件,所以要注意度过死点的措施。 图3-1凸轮-铰链四杆机构的方案 2.凸轮─全移动副四杆机构 图3-2所示为全移动副四杆机构是两自由度机构,构件2上的点M可精确再现给定的轨迹,构件2的运动速度和急回特征由凸轮控制;这个机构方案的缺点是因水平方向轨迹太长,造成凸轮机构从动件的行程过大,而使相应凸轮尺寸过大。 图3-2凸轮—全移动副四杆机构的方案 3. 五杆组合机构方案 确定一条平面曲线需要两个独立变量。因此具有两自由度的连杆机构都具有精确再现给定平面轨迹的特征。点M的速度和机构的急回特征,可通过控制该机构的两个输入构件间的运动关系来得到,如用凸轮机构、齿轮或四连杆机构来控制等等。图4所示为两个自由度的五杆低副机构,l、4为它们的两个输人构件,这两构件之间的运动关系用凸轮、齿轮或四连杆机构来实现,从而将原来 两自由度机构系统封闭成单自由度系统。 图4 五杆组合机构方案 3.6方案的评定及选择最优方案 3.6.1方案的评定 根据上节所给出的三种设计方案,我们来讨论并从中选出较优方案进行最终的设计。 首先是凸轮—铰链四杆机构:此机构结构简单,、体积小,安装后便于调试而且从经济性角度来看,也很合适。其中凸轮轴能很好协调推头的运动且工作平稳。推头M能够近似的完成所要求的工作行程轨迹,主要由各推杆的长度比例及凸轮的形状来实现推回程速度比和推程。但缺点是四杆机构的低副之间存在间隙,杆较多,容易产生误差,累积误差大,不能实现精确运动。冲击、震动较大,一般适用于低速场合。因为本设计中使用的连杆不多,而且速度不是很快,这种方案可以满足设计要求。 其次五杆组合机构的方案五杆组合机构方案,此方案所需要的杆件繁多,设计烦琐,实际机构尺寸过大,不是很合理的一个设计方案,性价比也不高。 最后凸轮-全移动副四连杆机构的方案是两自由度机构,构件2上的M点可精确再现给定的轨迹,构件2的运动速度和急回特征由凸轮控制。这个机构方案的缺点是因水平方向轨迹太长,造成凸轮机构从动件的行程过大,而使相应凸轮尺寸过大,不符合实际要求,空间过大。 3.6.2方案的选择 根据上述方案的评定,最终选择凸轮铰链四杆机构作为本次设计的推瓶机构方案,如图所示: 4,凸轮及铰链四杆机构的设计 4.1凸轮的设计 4.1.1凸轮基本参数设计 (1) 凸轮机构的组成   凸轮是一个具有曲线轮廓或凹槽的构件。凸轮通常作等速转动,但也有作往复摆动或移动的。推杆是被凸轮直接推动的构件。因为在凸轮机构中推杆多是从动件,故又常称其为从动件。凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。 (2)凸轮机构中的作用力   直动尖顶推杆盘形凸轮机构在考虑摩擦时,其凸轮对推杆的作用力 F 和推杆所受的载荷(包括推杆的自重和弹簧压力等) G 的关系为 F = G /[cos(α+φ1) - (l+2b/l)sin(α+φ1)tanφ2] (3)凸轮机构的压力角   推杆所受正压力的方向(沿凸轮廓线在接触点的法线方向)与推杆上作用点的速度方向之间所夹之锐角,称为凸轮机构在图示位置的压力角,用α表示   在凸轮机构中,压力角α是影响凸轮机构受力情况的一个重要参数。在其他条件相同的情况下,压力角α愈大,则分母越小,作用力 F 将愈大;如果压力角大到使作用力将增至无穷大时,机构将发生自锁,而此时的压力角特称为临界压力角αc ,即 αc=arctan{1/[(1+2b/l)tanφ2]}-φ 1 为保证凸轮机构能正常运转,应使其最大压力角αmax小于临界压力角αc 。在生产实际中,为了提高机构的效率、改善其受力情况,通常规定凸轮机构的最大压力角αmax应小于某一许用压力角[α]。其值一般为: 推程对摆动推杆取[α] =35~45 ;   回程时通常取[α]′ =70~80。 (4)根据以上设计内容确定出凸轮设计曲线图如线图(图4-1)所示。 图4-1凸轮设计曲线图 凸轮的轮廓主要尺寸是根据四杆机构推头所要达到的工作行程和推头工作速度来确定的,初步定基圆半径r0=50m,沟槽宽20mm,凸轮厚25mm, 孔r=15mm ,滚子半径rr=10mm。 凸轮的理论轮廓曲线的坐标公式为: , (A) (5)求凸轮理论轮廓曲线: a)推程阶段 δ01=216=1.2 = b)远休阶段 = 7.5 c)回程阶段 d) 近休阶段 = e)推程段的压力角和回程段的压力角 将以上各相应值代入式(A)计算理论轮廓曲线上各点的坐标值。在计算中时应注意:在推程阶段取,在远休阶段取,在回程阶段取,在近休阶段取。计算结果见表4-1。. 根据推瓶机构原理,推瓶机构所需达到的工作要求来设计凸轮,凸轮的基本尺寸在近休时尺寸为50mm,达到最远距离是尺寸为180.9mm。 (6)求工作轮廓曲线: 有公式的 其中: a) 推程阶段 = b) 远休阶段 c) 回程阶段 d) 近休阶段 计算结果可以得凸轮工作轮廓曲线个点的坐标见下表4-1: 表4-1 x y 0 5 10 … 350 355 360 0.0 4.359 8.705 … -8.682 -4.358 0.0 50.0 49.826 49.370 … 49.246 49.810 50.0 0.0 3.602 7.409 … -6.946 -3.486 0.0 40.0 39.855 39.455 … 39.392 39.847 40.0 4.1.2凸轮的建模 根据上一节内容凸轮的基本尺寸利用Pro/E软件做的凸轮机构,如下图所示(图4-2)所示。 左图 图4-2 4.2铰链四杆机构的设计 4.2.1铰链四杆机构尺寸设计 铰链四杆机构按照给定的急回要求设计,利用解析法求解此类问题时,主要利用机构在极为是的特性。又已知的行程速比系数K和摇杆摆角φ=69度,在由图4-3查的最小传动角的最大值maxγmin及β的大小在计算各杆的长度。 图4-3 查表可知maxγmin=45,β=75则: =180(K-1)/(K+1)=90 a/d=sin(/2)sin(/2+β)/cos(/2-/2) b/d= sin(/2)sin(/2+β)/sin(/2- /2) (c/d)=(a/d+b/d)+1-2(a/d+b/d)cosβ 选定机架长度d就可以确定其他各干长度。 根据推瓶的行程来确定各杆的长度及摆角大小,摇杆所转的角度 =69度,行程速比系数K=3。 得 L1=477.64mm L2=290.22mm L3=577.3 L3a=229.3 L4=500mm L4a=200mm 连杆机构中的运动副一般均为低副。其运动元素为面接触,压力较小,承载能力较大,润滑较好,磨损小,加工制造容易,且连杆机构中的低副一般是几何封闭。能很好的保证工作可靠性。 对于四杆机构来说,当其铰链中心位置确定后,各杆的长度也就确定了,用作图法进行设计,就是利用各铰链之间的相对运动的几何关系,通过作图法确定各铰链的位置,从而得出各杆的长度。图解法的优点是直观,简单,快捷,对三个设计位置下的设计十分方便,其设计精度也能满足工作要求。根据第3章四杆机构的尺寸来设计铰链四杆机构。 连杆材料为45#钢调制处理,杆粗为20mm,根据各干长度尺寸现用Pro/E软件绘制连杆机构图如下,这三幅图分别为连杆滑块在凸轮上转到近休时连杆机构的位置(图4-4所示, 连杆滑块转到凸轮远休时连杆机构的位置(图4-5)所示。 图4-4 图4-5 4.3凸轮铰链四杆机构组合运动图 下图三个依次为连杆滑块转到凸轮最远距离远休位置时的图(图4-6)所示, 连杆滑块转到凸轮最近距离近休位置时的图(图4-7)所示。 当凸轮转到远休位置时,这时通过连杆在凸轮上的滚子推动连杆,铰链四杆机构的摆杆2运动到了最大位置,,和机架安装的杆1在一条水平线上。 图4-6 当凸轮运动到近休位置时,这时通过在凸轮上连接滚子的连杆推动杆2和杆3运动到一条直线上,这个时候是摆杆回到了初始位置,推头开始推瓶。 图4-7 5,结构设计 6,机械整体运动简图 7,结论 对洗瓶机的推瓶机构的功能原理和工作原理进行详细的分析和设计,并且对其传动系统进行了设计。首先,对洗瓶机推瓶机构的电机、减速器、带轮及其齿轮传动等主要的传动系统进行了分析与设计,使的它的运动状态和运动规律能更好的实现其实际的工作。对洗瓶机的整个工作过程做了详细的阐述,并且根据设计过程的凸轮转动结合连杆的实际运动规律绘制了工作循环图,使洗瓶机的各步的运动状态、工作过程等更好的体现出来。 本次机械创新推瓶机构的设计过程中,应用到机械设计,机械原理,机械设计手册等相关方面的教材,通过设计,凸轮铰链四杆机构首先是凸轮—铰链四杆机构:此机构结构简单,、体积小,安装后便于调试而且从经济性角度来看,也很合适。其中凸轮轴能很好协调推头的运动且工作平稳。推头M能够近似的完成所要求的工作行程轨迹,主要由各推杆的长度比例及凸轮的形状来实现推回程速度比和推程。但缺点是四杆机构的低副之间存在间隙,杆较多,容易产生误差,累积误差大,不能实现精确运动。冲击、震动较大,一般适用于低速场合。符合本次设计要求。 本通过本次设计的调研、软件的学习、计算机的运用等都有了进一步的提高,并且结合以往学习的专业课知识,从不同的角度对机器进行了分析与研究,开阔了视野,增长了知识,也对我国现在的工业生产与车间的生产技术有了更深入的了解。此次设计的工作量大,是一次设计更是一次锻炼,为以后步入工作打下了坚实的基础。 8,参考文献 [1]孙恒 陈作模 葛文杰.机械原理第七版.高等教育出版社,2006.5 [2]刘鸿文.材料力学.高等教育出版社,2004 [3]华大年 华志宏.连杆机构设计与应用创新.机械工业出版社,2008.1 【4】郭朝勇.AutoCAD2008中文版教程:清华大学出版社,2007.10 [5] 孙恒.机械原理.第七版,北京:机械工业出版社,2009.5 [6] 孙建东.机械设计基础.北京:清华大学出版社,2007.1
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 技术资料 > 施工组织


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁