苏教出版小学五年级下册数学总练习总结复习资料资料和学习知识重要资料.doc

举报
资源描述
,. 苏教版小学五年级下册数学总复习资料和知识重点 第一单元 方程 1、表示相等关系的式子叫做等式。 2、含有未知数的等式是方程。 3、方程一定是等式;等式不一定是方程。等式>方程 4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。 等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。 5、求方程中未知数的过程,叫做解方程。 解方程时常用的关系式: 一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差   一个因数=积另一个因数 除数=被除数商 被除数=商除数 注意:解完方程,要养成检验的好习惯。   6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数   7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式) 8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出方程E、解方程F、检验G、作答。 第二单元 确定位置   1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。 2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。 3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示“经度”和“纬度”,“经度”和“纬度”都用度()、分(′)、秒(″)表示。   4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。   5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。 第三单元 公倍数和公因数   1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。   一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。   一个数最大的因数等于这个数最小的倍数。   2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。   3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号( , )。两个数的公因数也是有限的。   4、两个素数的积一定是合数。举例:35=15,15是合数。   5、两个数的最小公倍数一定是它们的最大公因数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。   6、求最大公因数和最小公倍数的方法:   倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5   素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1   一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1   相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1   特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积。   一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)   数字与信息   1、我国目前采用的邮政编码为“四级六码”制。第一、二位代表省(自治区、直辖市),第三位代表邮区,第四位代表县(市)邮电局,最后两位是投递局(区)的编号。   2、身份证编码规则:1-6位数字为行政区划代码,其中1、2位数为各省级政府的代码,3、4位数为地、市级政府的代码,5、6位数为县、区级政府代码。 7-14位为您的出生日期,其中7-10位为出生年份(4位),11-12位为出生月份,13-14位为出生日期,15-17位为顺序码,是县、区级政府所辖派出所的分配码,其中单数为男性分配码,双数为女性分配码。18位为校验码,是由号码编制单位按照统一的公式计算得出来的,其取值范围是0至10,当值等于10时,用罗马数字符χ表示。 常用的数量关系式 1、每份数份数=总数 总数每份数=份数 总数份数=每份数 2、1倍数倍数=几倍数 几倍数1倍数=倍数 几倍数倍数=1倍数 3、速度时间=路程 路程速度=时间 路程时间=速度 4、单价数量=总价 总价单价=数量 总价数量=单价 5工作效率工作时间=工作总量 工作总量工作效率=工作时间 工作总量工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数因数=积 积一个因数=另一个因数 9、被除数除数=商 被除数商=除数 商除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 )   周长=边长4 C=4a   面积=边长边长 S=aa 2、正方体 (V:体积 a:棱长 )   表面积=棱长棱长6 S表=aa6   体积=棱长棱长棱长 V=aaa 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)  (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh)  (2)体积=长宽高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高 6、平行四边形 (s:面积 a:底 h:高) 面积=底高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)高2 s=(a+b) h2 8、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径л=2л半径 C=лd=2лr (2)面积=半径半径л 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长高=ch(2лr或лd) (2) 表面积=侧面积+底面积2 (3)体积=底面积高 (4体积=侧面积2半径 10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积高3 11、总数总份数=平均数 12、和差问题的公式 (和+差)2=大数 (和-差)2=小数 13、和倍问题 和(倍数-1)=小数 小数倍数=大数 (或者 和-小数=大数) 14、差倍问题 差(倍数-1)=小数 小数倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和相遇时间 相遇时间=相遇路程速度和 速度和=相遇路程相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量溶液的重量100%=浓度 溶液的重量浓度=溶质的重量 溶质的重量浓度=溶液的重量 17、利润与折扣问题 利润=售出价-成本 利润率=利润成本100%=(售出价成本-1)100% 涨跌金额=本金涨跌百分比 利息=本金利率时间 税后利息=本金利率时间(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,一个数的各位上的数的和能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。 能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 …… 3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。 (三)分数 1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 2 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 三 性质和规律 (四)分数的基本性质 分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (7)常见的数量关系: 总价= 单价数量 路程= 速度时间 工作总量=工作时间工效 总产量=单产量数量 植树问题: 解题规律:沿线段植树 棵树=段数+1 棵树=总路程株距+1 株距=总路程(棵树-1) 总路程=株距(棵树-1) 沿周长植树 棵树=总路程株距 株距=总路程棵树 总路程=株距棵树 (13)鸡兔问题:解题规律:(总腿数-鸡腿数总头数)一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数-2总头数)2 如果假设全是兔子,可以有下面的式子: 鸡的只数=(4总头数-总腿数)2 兔的头数=总头数-鸡的只数 例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只? 兔子只数 ( 170-2 50 ) 2 =35 (只) 鸡的只数 50-35=15 (只) 4 出勤率 发芽率=发芽种子数/试验种子数100% 小麦的出粉率= 面粉的重量/小麦的重量100% 产品的合格率=合格的产品数/产品总数100% 职工的出勤率=实际出勤人数/应出勤人数100% 5 工程问题: 数量关系式: 工作总量=工作效率工作时间 工作效率=工作总量工作时间 工作时间=工作总量工作效率 工作总量工作效率和=合作时间 利息=本金利率时间 第二章 度量衡 (三)面积单位的换算 * 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米 * 1公倾 =10000 平方米 * 1平方公里 =100 公顷 (三)2 容积单位换算 * 1立方米=1000立方分米 1升=1000毫升 1立方分米=1000立方厘米 * 1升=1立方米 * 1毫升=1立方厘米 (三)常用换算 * 一吨=1000千克 * 1千克=1000克 五 时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、 年 、 月 、 日 、 时 、 分、 秒 (三)单位换算 * 1世纪=100年 * 1年=365天 平年 * 一年=366天 闰年 * 一、三、五、七、八、十、十二是大月 大月有31 天 * 四、六、九、十一是小月小月 小月有30天 * 平年2月有28天 闰年2月有29天 * 1天= 24小时 * 1小时=60分 * 一分=60秒 六 货币 (一)什么是货币 货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。 (二)常用单位 * 元 * 角 * 分 (三)单位换算 * 1元=10角 * 1角=10分 (1)常见的数量关系 路程用s表示,速度v用表示,时间用t表示,三者之间的关系: s=vt v=s/t t=s/v 总价用a表示,单价用b表示,数量用c表示,三者之间的关系: a=bc b=a/c c=a/b 圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。 c=∏d=2∏r s=∏ r? 扇形的半径用r表示,n表示圆心角的度数,面积用s表示。 s=∏ nr?/360 圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示. s侧=ch s表=s侧+2s底 v=sh
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁