资源描述
,.
第二章 简单线性回归模型
2.1
(1) ①首先分析人均寿命与人均GDP 的数量关系,用Eviews 分析:
Dependent Variable: Y
Method: Least Squares
Date: 12/27/14 Time: 21:00
Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 56.64794 1.960820 28.88992 0.0000
X1 0.128360 0.027242 4.711834 0.0001 R-squared 0.526082 Mean dependent var 62.50000
Adjusted R-squared 0.502386 S.D. dependent var 10.08889
S.E. of regression 7.116881 Akaike info criterion 6.849324
Sum squared resid 1013.000 Schwarz criterion 6.948510
Log likelihood -73.34257 Hannan-Quinn criter. 6.872689
F-statistic 22.20138 Durbin-Watson stat 0.629074
Prob(F-statistic) 0.000134 有上可知,关系式为y=56.64794+0.128360x1
②关于人均寿命与成人识字率的关系,用Eviews 分析如下:
Dependent Variable: Y
Method: Least Squares
Date: 11/26/14 Time: 21:10
Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 38.79424 3.532079 10.98340 0.0000
X2 0.331971 0.046656 7.115308 0.0000 R-squared 0.716825 Mean dependent var 62.50000
Adjusted R-squared 0.702666 S.D. dependent var 10.08889
S.E. of regression 5.501306 Akaike info criterion 6.334356
Sum squared resid 605.2873 Schwarz criterion 6.433542
Log likelihood -67.67792 Hannan-Quinn criter. 6.357721
F-statistic 50.62761 Durbin-Watson stat 1.846406
Prob(F-statistic) 0.000001 由上可知,关系式为y=38.79424+0.331971x2
③关于人均寿命与一岁儿童疫苗接种率的关系,用Eviews 分析如下:
Dependent Variable: Y
Method: Least Squares
Date: 11/26/14 Time: 21:14
Sample: 1 22
Included observations: 22 Variable Coefficient Std. Error t-Statistic Prob. C 31.79956 6.536434 4.864971 0.0001
X3 0.387276 0.080260 4.825285 0.0001 R-squared 0.537929 Mean dependent var 62.50000
Adjusted R-squared 0.514825 S.D. dependent var 10.08889
S.E. of regression 7.027364 Akaike info criterion 6.824009
Sum squared resid 987.6770 Schwarz criterion 6.923194
Log likelihood -73.06409 Hannan-Quinn criter. 6.847374
F-statistic 23.28338 Durbin-Watson stat 0.952555
Prob(F-statistic) 0.000103 由上可知,关系式为y=31.79956+0.387276x3
(2)①关于人均寿命与人均GDP 模型,由上可知,可决系数为0.526082,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β1)=4.711834>t0.025(20)=2.086,对斜率系数的显著性检验表明,人均GDP 对人均寿命有显著影响。
②关于人均寿命与成人识字率模型,由上可知,可决系数为0.716825,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β2)=7.115308>t0.025(20)=2.086,对斜率系数的显著性检验表明,成人识字率对人均寿命有显著影响。
③关于人均寿命与一岁儿童疫苗的模型,由上可知,可决系数为0.537929,说明所建模型整体上对样本数据拟合较好。
对于回归系数的t 检验:t (β3)=4.825285>t0.025(20)=2.086,对斜率系数的显著性检验表明,一岁儿童疫苗接种率对人均寿命有显著影响。
2.2
(1)
①对于浙江省预算收入与全省生产总值的模型,用Eviews 分析结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/03/14 Time: 17:00
Sample (adjusted): 1 33
Included observations: 33 after adjustments
Variable Coefficient Std. Error t-Statistic
X 0.176124 0.004072 43.25639
C -154.3063 39.08196 -3.948274
R-squared 0.983702 Mean dependent var
Adjusted R-squared 0.983177 S.D. dependent var
S.E. of regression 175.2325 Akaike info criterion
Sum squared resid 951899.7 Schwarz criterion
Log likelihood -216.2751 Hannan-Quinn criter.
F-statistic 1871.115 Durbin-Watson stat
Prob(F-statistic) 0.000000
Prob. 0.0000 0.0004 902.5148 1351.009 13.22880 13.31949 13.25931 0.100021 ②由上可知,模型的参数:斜率系数0.176124,截距为—154.3063
③关于浙江省财政预算收入与全省生产总值的模型,检验模型的显著性:
1)可决系数为0.983702,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t 检验:t (β2)=43.25639>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。
④用规范形式写出检验结果如下:
Y=0.176124X—154.3063
(0.004072) (39.08196)
t= (43.25639) (-3.948274)
R2=0.983702 F=1871.115 n=33
⑤经济意义是:全省生产总值每增加1亿元,财政预算总收入增加0.176124亿元。
(2)当x=32000时,
①进行点预测,由上可知Y=0.176124X—154.3063,代入可得:
Y= Y=0.176124*32000—154.3063=5481.6617
②进行区间预测:
∑x2=∑(X i —X )2=δ2x (n—1)= 7608.0212 x (33—1)=1852223.473
(Xf —X) 2=(32000— 6000.441)2=675977068.2
当Xf=32000时,将相关数据代入计算得到:
5481.6617—2.0395x175.2325x√1/33+1852223.473/675977068.2≤
Yf≤5481.6617+2.0395x175.2325x√1/33+1852223.473/675977068.2
即Yf 的置信区间为(5481.6617—64.9649, 5481.6617+64.9649)
(3) 对于浙江省预算收入对数与全省生产总值对数的模型,由Eviews 分析结果如下: Dependent Variable: LNY
Method: Least Squares
Date: 12/03/14 Time: 18:00
Sample (adjusted): 1 33
Included observations: 33 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
LNX 0.980275 0.034296 28.58268 0.0000
C -1.918289 0.268213 -7.152121 0.0000
R-squared 0.963442 Mean dependent var 5.573120
Adjusted R-squared 0.962263 S.D. dependent var 1.684189
S.E. of regression 0.327172 Akaike info criterion 0.662028
Sum squared resid 3.318281 Schwarz criterion 0.752726
Log likelihood -8.923468 Hannan-Quinn criter. 0.692545
F-statistic 816.9699 Durbin-Watson stat 0.096208
Prob(F-statistic) 0.000000
①模型方程为:lnY=0.980275lnX-1.918289
②由上可知,模型的参数:斜率系数为0.980275,截距为-1.918289
③关于浙江省财政预算收入与全省生产总值的模型,检验其显著性:
1)可决系数为0.963442,说明所建模型整体上对样本数据拟合较好。
2)对于回归系数的t 检验:t (β2)=28.58268>t0.025(31)=2.0395,对斜率系数的显著性检验表明,全省生产总值对财政预算总收入有显著影响。
④经济意义:全省生产总值每增长1%,财政预算总收入增长0.980275%
2.4
(1)对建筑面积与建造单位成本模型,用Eviews 分析结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/01/14 Time: 12:40
Sample: 1 12
Included observations: 12 Variable Coefficient Std. Error t-Statistic Prob. X -64.18400 4.809828 -13.34434 0.0000
C 1845.475 19.26446 95.79688 0.0000 R-squared 0.946829 Mean dependent var 1619.333
Adjusted R-squared 0.941512 S.D. dependent var 131.2252
S.E. of regression 31.73600 Akaike info criterion 9.903792
Sum squared resid 10071.74 Schwarz criterion 9.984610
Log likelihood -57.42275 Hannan-Quinn criter. 9.873871
F-statistic 178.0715 Durbin-Watson stat 1.172407
Prob(F-statistic) 0.000000 由上可得:建筑面积与建造成本的回归方程为:
Y=1845.475--64.18400X
(2)经济意义:建筑面积每增加1万平方米,建筑单位成本每平方米减少64.18400元。
(3)
①首先进行点预测,由Y=1845.475--64.18400X 得,当x=4.5,y=1556.647
②再进行区间估计:
由上表可知,
∑x2=∑(X i —X )2=δ2x (n—1)= 1.9894192 x (12—1)=43.5357
(Xf —X) 2=(4.5— 3.523333) 2=0.95387843
当Xf=4.5时,将相关数据代入计算得到:
1556.647—2.228x 31.73600x√1/12+43.5357/0.95387843≤
Yf≤1556.647+2.228x31.73600x√1/12+43.5357/0.95387843
即Yf 的置信区间为(1556.647—478.1231, 1556.647+478.1231)
3.1
(1)
①对百户拥有家用汽车量计量经济模型,用Eviews 分析结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 11/25/14 Time: 12:38
Sample: 1 31
Included observations: 31
Variable Coefficient Std. Error t-Statistic Prob.
X2 5.996865 1.406058 4.265020 0.0002
X3 -0.524027 0.179280 -2.922950 0.0069
X4 -2.265680 0.518837 -4.366842 0.0002
C 246.8540 51.97500 4.749476 0.0001
R-squared 0.666062 Mean dependent var 16.77355
Adjusted R-squared 0.628957 S.D. dependent var 8.252535
S.E. of regression 5.026889 Akaike info criterion 6.187394
Sum squared resid 682.2795 Schwarz criterion 6.372424
Log likelihood -91.90460 Hannan-Quinn criter. 6.247709
F-statistic 17.95108 Durbin-Watson stat 1.147253
Prob(F-statistic) 0.000001
②得到模型得:
Y=246.8540+5.996865X2- 0.524027 X3-2.265680 X4
③对模型进行检验:
1) 可决系数是0.666062,修正的可决系数为0.628957,说明模型对样本拟合较好
2) F 检验,F=17.95108>F(3,27)=3.65,回归方程显著。
3)t 检验,t 统计量分别为4.749476,4.265020,-2.922950,-4.366842,均大于 t (27)=2.0518,所以这些系数都是显著的。
④依据:
1) 可决系数越大,说明拟合程度越好
2) F 的值与临界值比较,若大于临界值,则否定原假设,回归方程是显著的;若小于临界
值,则接受原假设,回归方程不显著。
3) t 的值与临界值比较,若大于临界值,则否定原假设,系数都是显著的;若小于临界值,
则接受原假设,系数不显著。
(2)经济意义:人均GDP增加1万元,百户拥有家用汽车增加5.996865辆,城镇人口比重增加1个百分点,百户拥有家用汽车减少0.524027辆,交通工具消费价格指数每上升1,百户拥有家用汽车减少2.265680辆。
(3)用EViews 分析得:
Dependent Variable: Y
Method: Least Squares
Date: 12/08/14 Time: 17:28
Sample: 1 31
Included observations: 31 Variable Coefficient Std. Error t-Statistic Prob. X2 5.135670 1.010270 5.083465 0.0000
LNX3 -22.81005 6.771820 -3.368378 0.0023
LNX4 -230.8481 49.46791 -4.666624 0.0001
C 1148.758 228.2917 5.031974 0.0000 R-squared 0.691952 Mean dependent var 16.77355
Adjusted R-squared 0.657725 S.D. dependent var 8.252535
S.E. of regression 4.828088 Akaike info criterion 6.106692
Sum squared resid 629.3818 Schwarz criterion 6.291723
Log likelihood -90.65373 Hannan-Quinn criter. 6.167008
F-statistic 20.21624 Durbin-Watson stat 1.150090
Prob(F-statistic) 0.000000 模型方程为:
Y=5.135670 X2-22.81005 LNX3-230.8481 LNX4+1148.758
此分析得出的可决系数为0.691952>0.666062,拟合程度得到了提高,可这样改进。
3.2
(1)对出口货物总额计量经济模型,用Eviews 分析结果如下::
Dependent Variable: Y
Method: Least Squares
Date: 12/01/14 Time: 20:25
Sample: 1994 2011
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X2 0.135474 0.012799 10.58454 0.0000
X3 18.85348 9.776181 1.928512 0.0729
C -18231.58 8638.216 -2.110573 0.0520 R-squared 0.985838 Mean dependent var 6619.191
Adjusted R-squared 0.983950 S.D. dependent var 5767.152
S.E. of regression 730.6306 Akaike info criterion 16.17670
Sum squared resid 8007316. Schwarz criterion 16.32510
Log likelihood -142.5903 Hannan-Quinn criter. 16.19717
F-statistic 522.0976 Durbin-Watson stat 1.173432
Prob(F-statistic) 0.000000 ①由上可知,模型为:
Y = 0.135474X2 + 18.85348X3 - 18231.58
②对模型进行检验:
1)可决系数是0.985838,修正的可决系数为0.983950,说明模型对样本拟合较好
2)F 检验,F=522.0976>F(2,15)=4.77,回归方程显著
3)t 检验,t 统计量分别为X2的系数对应t 值为10.58454,大于t (15)=2.131,系数是显著的,X3的系数对应t 值为1.928512,小于t (15)=2.131,说明此系数是不显著的。
(2)对于对数模型,用Eviews 分析结果如下:
Dependent Variable: LNY
Method: Least Squares
Date: 12/01/14 Time: 20:25
Sample: 1994 2011
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. LNX2 1.564221 0.088988 17.57789 0.0000
LNX3 1.760695 0.682115 2.581229 0.0209
C -20.52048 5.432487 -3.777363 0.0018 R-squared 0.986295 Mean dependent var 8.400112
Adjusted R-squared 0.984467 S.D. dependent var 0.941530
S.E. of regression 0.117343 Akaike info criterion -1.296424
Sum squared resid 0.206540 Schwarz criterion -1.148029
Log likelihood 14.66782 Hannan-Quinn criter. -1.275962
F-statistic 539.7364 Durbin-Watson stat 0.686656
Prob(F-statistic) 0.000000 ①由上可知,模型为:
LNY=-20.52048+1.564221 LNX2+1.760695 LNX3
②对模型进行检验:
1)可决系数是0.986295,修正的可决系数为0.984467,说明模型对样本拟合较好。
2)F 检验,F=539.7364> F(2,15)=4.77,回归方程显著。
3)t 检验,t 统计量分别为-3.777363,17.57789,2.581229,均大于t (15)=2.131,所以这些系数都是显著的。
(3)
①(1)式中的经济意义:工业增加1亿元,出口货物总额增加0.135474亿元,人民币汇率增加1,出口货物总额增加18.85348亿元。
②(2)式中的经济意义:工业增加额每增加1%,出口货物总额增加1.564221%,人民币汇率每增加1%,出口货物总额增加1.760695%
3.3
(1)对家庭书刊消费对家庭月平均收入和户主受教育年数计量模型,由Eviews 分析结果如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/01/14 Time: 20:30
Sample: 1 18
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X 0.086450 0.029363 2.944186 0.0101
T 52.37031 5.202167 10.06702 0.0000
C -50.01638 49.46026 -1.011244 0.3279 R-squared 0.951235 Mean dependent var 755.1222
Adjusted R-squared 0.944732 S.D. dependent var 258.7206
S.E. of regression 60.82273 Akaike info criterion 11.20482
Sum squared resid 55491.07 Schwarz criterion
Log likelihood -97.84334 Hannan-Quinn criter.
F-statistic 146.2974 Durbin-Watson stat
Prob(F-statistic) 0.000000
①模型为:Y = 0.086450X + 52.37031T-50.01638
11.35321 11.22528 2.605783
②对模型进行检验:
1)可决系数是0.951235,修正的可决系数为0.944732,说明模型对样本拟合较好。
2)F 检验,F=539.7364> F(2,15)=4.77,回归方程显著。
3)t 检验,t 统计量分别为2.944186,10.06702,均大于t (15)=2.131,所以这些系数都是显著的。
③经济意义:家庭月平均收入增加1元,家庭书刊年消费支出增加0.086450元,户主受教育年数增加1年,家庭书刊年消费支出增加52.37031元。
(2)用Eviews 分析:
①
Dependent Variable: Y
Method: Least Squares
Date: 12/01/14 Time: 22:30
Sample: 1 18
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. T 63.01676 4.548581 13.85416 0.0000
C -11.58171 58.02290 -0.199606 0.8443 R-squared 0.923054 Mean dependent var 755.1222
Adjusted R-squared 0.918245 S.D. dependent var 258.7206
S.E. of regression 73.97565 Akaike info criterion 11.54979
Sum squared resid 87558.36 Schwarz criterion 11.64872
Log likelihood -101.9481 Hannan-Quinn criter. 11.56343
F-statistic 191.9377 Durbin-Watson stat 2.134043
Prob(F-statistic) 0.000000 ②
Dependent Variable: X
Method: Least Squares
Date: 12/01/14 Time: 22:34
Sample: 1 18
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob.
T 123.1516 31.84150 3.867644 0.0014
C 444.5888 406.1786 1.094565 0.2899 R-squared 0.483182 Mean dependent var 1942.933
Adjusted R-squared 0.450881 S.D. dependent var 698.8325
S.E. of regression 517.8529 Akaike info criterion 15.44170
Sum squared resid 4290746. Schwarz criterion 15.54063
Log likelihood -136.9753 Hannan-Quinn criter. 15.45534
F-statistic 14.95867 Durbin-Watson stat 1.052251
Prob(F-statistic) 0.001364 以上分别是y 与T ,X 与T 的一元回归
模型分别是:
Y = 63.01676T - 11.58171
X = 123.1516T + 444.5888
(3)对残差进行模型分析,用Eviews 分析结果如下:
Dependent Variable: E1
Method: Least Squares
Date: 12/03/14 Time: 20:39
Sample: 1 18
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. E2 0.086450 0.028431 3.040742 0.0078
C 3.96E-14 13.88083 2.85E-15 1.0000 R-squared 0.366239 Mean dependent var 2.30E-14
Adjusted R-squared 0.326629 S.D. dependent var 71.76693
S.E. of regression 58.89136 Akaike info criterion 11.09370
Sum squared resid 55491.07 Schwarz criterion 11.19264
Log likelihood -97.84334 Hannan-Quinn criter. 11.10735
F-statistic 9.246111 Durbin-Watson stat 2.605783
Prob(F-statistic) 0.007788 模型为:
E 1 = 0.086450E2 + 3.96e-14
参数:斜率系数α为0.086450,截距为3.96e-14
(3)由上可知,β2与α2的系数是一样的。回归系数与被解释变量的残差系数是一样的,它们的变化规律是一致的。
3.6
(1)预期的符号是X 1,X 2,X 3,X 4,X 5的符号为正,X 6的符号为负
(2)根据Eviews 分析得到数据如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/04/14 Time: 13:24
Sample: 1994 2011
Included observations: 18 Variable Coefficient Std. Error t-Statistic Prob. X2 0.001382 0.001102 1.254330 0.2336
X3 0.001942 0.003960 0.490501 0.6326
X4 -3.579090 3.559949 -1.005377 0.3346
X5 0.004791 0.005034 0.951671 0.3600
X6 0.045542 0.095552 0.476621 0.6422
C -13.77732 15.73366 -0.875659 0.3984 R-squared 0.994869 Mean dependent var 12.76667
Adjusted R-squared 0.992731 S.D. dependent var 9.746631
S.E. of regression 0.830963 Akaike info criterion 2.728738
Sum squared resid 8.285993 Schwarz criterion 3.025529
Log likelihood -18.55865 Hannan-Quinn criter. 2.769662
F-statistic 465.3617 Durbin-Watson stat 1.553294
Prob(F-statistic) 0.000000 ①与预期不相符。
②评价:
1) 可决系数为0.994869,数据相当大,可以认为拟合程度很好。
2) F 检验,F=465.3617>F(5.12)=3,89,回归方程显著
3) T 检验,X 1,X 2,X 3,X 4,X 5,X 6 系数对应的t 值分别为:1.254330,0.490501,-1.005377,
0.951671,0.476621,均小于t (12)=2.179,所以所得系数都是不显著的。
(3)根据Eviews 分析得到数据如下:
Dependent Variable: Y
Method: Least Squares
Date: 12/03/14 Time: 11:12
Sample: 1994 2011
Included observations: 18
Variable Coefficient Std. Error t-Statistic
X5 0.001032 2.20E-05 46.79946
X6 -0.054965 0.031184 -1.762581
C 4.205481 3.335602 1.260786 Prob. 0.0000 0.0983 0.2266
R-squared 0.993601 Mean dependent var 12.76667
Adjusted R-squared 0.992748 S.D. dependent var 9.746631
S.E. of regression 0.830018 Akai
展开阅读全文
相关搜索