《2017-2018学年高中数学人教B版必修三:课时跟踪检测(十九) 几何概型 随机数的含义与应用 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学人教B版必修三:课时跟踪检测(十九) 几何概型 随机数的含义与应用 .doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、课时跟踪检测(十九) 几何概型 随机数的含义与应用1已知地铁列车每10 min一班,在车站停1 min,则乘客到达站台立即乘上车的概率是()A. B.C. D.解析:选A试验的所有结果构成的区域长度为10 min,而构成事件A的区域长度为1 min,故P(A).2.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于()A. B.C. D.解析:选CABE的面积是矩形ABCD面积的一半,由几何概型知,点Q取自ABE内部的概率为.3.如图所示,一半径为2的扇形(其中扇形中心角为90),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A
2、. B.C. D1解析:选DS扇形22,S阴影S扇形SOAB222,P1.4在区间1,1上任取两数x和y,组成有序实数对(x,y),记事件A为“x2y21”,则P(A)为()A. B.C D2解析:选A如图,集合S(x,y)|1x1,1y1,则S中每个元素与随机事件的结果一一对应,而事件A所对应的事件(x,y)与圆x2y21内的点一一对应,所以P(A).5方程x2xn0(n(0,1)有实根的概率为_解析:由于方程x2xn0(n(0,1)有实根,0,即14n0,n,又n(0,1),有实根的概率为P.答案:6在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆
3、菌的概率为_解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型设取出2毫升水样中有大肠杆菌为事件A,则事件A构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P(A)0.005.答案:0.0057在棱长为a的正方体ABCDA1B1C1D1内任取一点P,则点P到点A的距离小于等于a的概率为_解析:点P到点A的距离小于等于a可以看做是随机的,点P到点A的距离小于等于a可视作构成事件的区域,棱长为a的正方体ABCDA1B1C1D1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率P.答案:8.如图,射箭比赛的箭靶涂有五个彩色的分环从外向内依次为白色
4、、黑色、蓝色、红色,靶心为金色金色靶心叫“黄心”奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B,由于中靶点随机地落在面积为1222 cm2的大圆内,而当中靶点落在面积为12.22 cm2的黄心时,事件B发生,于是事件B发生的概率为P(B)0.01.即“射中黄心”的概率是0.01.9已知圆C:x2y212,直线l:4x3y25.(1)求圆C的圆心到直线l的距离;(2)求圆C上任意一点A到直线l的距离小于2的概率解:(1)由点到直线l的距离公式可得d5.(2)由(1)可知圆心到直线l的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l平行的直线为l1,其方程为4x3y15.则符合题意的点应在l1:4x3y15与圆相交所得劣弧上,由半径为2,圆心到直线l1的距离为3可知劣弧所对圆心角为60.故所求概率为P.