dq坐标变换数学原理解析.ppt

上传人:豆**** 文档编号:26188192 上传时间:2022-07-16 格式:PPT 页数:91 大小:2.18MB
返回 下载 相关 举报
dq坐标变换数学原理解析.ppt_第1页
第1页 / 共91页
dq坐标变换数学原理解析.ppt_第2页
第2页 / 共91页
点击查看更多>>
资源描述

《dq坐标变换数学原理解析.ppt》由会员分享,可在线阅读,更多相关《dq坐标变换数学原理解析.ppt(91页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、3.2 坐标变换和动态数学模型的简化坐标变换和动态数学模型的简化 上节中虽已推导出异步电机的动态数上节中虽已推导出异步电机的动态数学模型,但是,要分析和求解这组非线性学模型,但是,要分析和求解这组非线性方程显然是十分困难的。在实际应用中必方程显然是十分困难的。在实际应用中必须设法予以简化,简化的基本方法是须设法予以简化,简化的基本方法是坐标坐标变换变换。 一、一、 坐标变换的基本思路坐标变换的基本思路 直流电机的数学模型比较简单:直流电机的数学模型比较简单: 虽然电枢本身是旋转的,但其绕组通过换向器电虽然电枢本身是旋转的,但其绕组通过换向器电刷接到端接板上,因此,电枢磁动势的轴线始终被电刷接到

2、端接板上,因此,电枢磁动势的轴线始终被电刷限定在刷限定在 q 轴位置上,其效果好象一个在轴位置上,其效果好象一个在 q 轴上静止轴上静止的绕组一样。的绕组一样。 主磁通主磁通 的方向沿着与之垂直的的方向沿着与之垂直的 d 轴;轴;直流电机直流电机的主磁通基本上唯一地由励磁绕组的励磁电流决定的主磁通基本上唯一地由励磁绕组的励磁电流决定,这是直流电机的数学模型及其控制系统比较简单的根这是直流电机的数学模型及其控制系统比较简单的根本原因。本原因。 交流电机的物理模型交流电机的物理模型 如果能将交流电机的物理模型等效地变换成类如果能将交流电机的物理模型等效地变换成类似直流电机的模式,分析和控制就可以大

3、大简化。似直流电机的模式,分析和控制就可以大大简化。坐标变换正是按照这条思路进行的。坐标变换正是按照这条思路进行的。 众所周知,交流电机三相对称的静止绕组众所周知,交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势磁动势是旋转磁动势F,它在空间呈正弦分布,以同,它在空间呈正弦分布,以同步转速步转速 1 (即电流的角频率)顺着(即电流的角频率)顺着 A-B-C 的相序的相序旋转。旋转。 (1)交流电机绕组的等效物理模型ABCABCiAiBiCF1图a 三相交流绕组 旋转磁动势的产生 然而,旋转磁动势并不一

4、定非要三相不然而,旋转磁动势并不一定非要三相不可,除单相以外,二相、三相、四相等任意可,除单相以外,二相、三相、四相等任意对称的多相绕组,通以平衡的多相电流,都对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。能产生旋转磁动势,当然以两相最为简单。 在这里,不同电机模型彼此在这里,不同电机模型彼此等效的原则等效的原则是:是:在不同坐标下所产生的磁动势完全一致在不同坐标下所产生的磁动势完全一致。 (2)等效的两相交流电机绕组Fii1图B 两相交流绕组 两相静止绕组两相静止绕组 和和 ,它,它们在空间互差们在空间互差90,通以时间,通以时间上互差上互差90的两相平衡交流电

5、的两相平衡交流电流,也产生旋转磁动势流,也产生旋转磁动势 F 。 当两个旋转磁动势大小和当两个旋转磁动势大小和转速都相等时,即认为图转速都相等时,即认为图b的的两相绕组与图两相绕组与图a的三相绕组等的三相绕组等效。效。 (3)旋转的直流绕组与等效直流电机模型1FdqimitMT图c 旋转的直流绕组 再看图再看图c中的两个匝数相等且互相垂直的绕中的两个匝数相等且互相垂直的绕组组 d 和和 q,其中分别通以直流电流,其中分别通以直流电流 id 和和iq,产,产生合成磁动势生合成磁动势 F ,其位置相对于绕组来说是固,其位置相对于绕组来说是固定的。定的。 如果让包含两个绕组在内的整个铁心以同步如果让

6、包含两个绕组在内的整个铁心以同步转速旋转,则磁动势转速旋转,则磁动势 F 自然也随之旋转起来,自然也随之旋转起来,成为旋转磁动势。成为旋转磁动势。 把这个旋转磁动势的大小和转速也控制成与把这个旋转磁动势的大小和转速也控制成与图图 a 和图和图 b 中的磁动势一样,那么这套旋转的直中的磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了。流绕组也就和前面两套固定的交流绕组都等效了。当观察者也站到铁心上和绕组一起旋转时,在他当观察者也站到铁心上和绕组一起旋转时,在他看来,看来,d 和和 q 是两个通以直流而相互垂直的静止是两个通以直流而相互垂直的静止绕组。绕组。 如果控制磁通的位

7、置在如果控制磁通的位置在 d 轴上,就和直流电轴上,就和直流电机物理模型没有本质上的区别了。这时,绕组机物理模型没有本质上的区别了。这时,绕组d相当于励磁绕组,相当于励磁绕组,q 相当于伪静止的电枢绕组。相当于伪静止的电枢绕组。 有意思的是:就图有意思的是:就图c 的的 M、T 两个绕组而两个绕组而言,当观察者站在地面看上去,它们是与三言,当观察者站在地面看上去,它们是与三相交流绕组等效的旋转直流绕组;如果跳到相交流绕组等效的旋转直流绕组;如果跳到旋转着的铁心上看,它们就的的确确是一个旋转着的铁心上看,它们就的的确确是一个直流电机模型了。这样,通过坐标系的变换,直流电机模型了。这样,通过坐标系

8、的变换,可以找到与交流三相绕组等效的直流电机模可以找到与交流三相绕组等效的直流电机模型。型。 现在的问题是,现在的问题是,如何求出如何求出iA、iB 、iC 与与 i 、i 和和 im、it 之间准确的等效关系,这就是之间准确的等效关系,这就是坐标变换坐标变换的任务的任务。 2. 三相三相-两相变换(两相变换(3/2变换)变换) 现在先考虑上述的第一种坐标变换现在先考虑上述的第一种坐标变换在三相静止绕组在三相静止绕组A、B、C和两相静和两相静止绕组止绕组 、 之间的变换,或称三相静止之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简坐标系和两相静止坐标系间的变换,简称称 3/2 变换。

9、变换。 三相和两相坐标系与绕组磁动势的空间矢量 AN2iN3iAN3iCN3iBN2i60o60oCB 为方便起见,取为方便起见,取 A 轴轴和和 轴重合。设三相绕组轴重合。设三相绕组每相有效匝数为每相有效匝数为N3,两相,两相绕组每相有效匝数为绕组每相有效匝数为N2,各相磁动势为有效匝数与各相磁动势为有效匝数与电流的乘积,其空间矢量电流的乘积,其空间矢量均位于有关相的坐标轴上。均位于有关相的坐标轴上。由于交流磁动势的大小随由于交流磁动势的大小随时间在变化着,图中磁动时间在变化着,图中磁动势矢量的长度是随意的。势矢量的长度是随意的。 设磁动势波形是正弦分布的,当三相总磁动势与设磁动势波形是正弦

10、分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在二相总磁动势相等时,两套绕组瞬时磁动势在 、 轴上的投影都应相等,轴上的投影都应相等, )2121(60cos60cosCBA3C3B3A32iiiNiNiNiNiN)(2360sin60sinCB3C3B32iiNiNiNiN写成矩阵形式,得写成矩阵形式,得CBA232323021211iiiNNii考虑考虑变换前后总功率不变变换前后总功率不变,在此前提下,可以证,在此前提下,可以证明,匝数比应为明,匝数比应为3223NN得CBA232302121132iiiii(3-37) 令令 C3/2 表示从三相坐标系变换到两相坐标系的表

11、示从三相坐标系变换到两相坐标系的变换矩阵,则变换矩阵,则 2323021211322/3C(3-38) 三相三相两相坐标系的变换矩阵两相坐标系的变换矩阵 如果三相绕组是如果三相绕组是Y形联结不带零线,形联结不带零线,则有则有 iA + iB + iC = 0,或,或 iC = iA iB 。代入式(代入式(3-37)得)得BA221023iiii 按照所采用的条件,电流变换阵也就是电压按照所采用的条件,电流变换阵也就是电压变换阵,同时还可证明,它们也是磁链的变换阵变换阵,同时还可证明,它们也是磁链的变换阵。3. 两相两相两相旋转变换(两相旋转变换(2s/2r变换)变换) 从两相静止坐从两相静止

12、坐标系到两相旋转坐标系到两相旋转坐标系标系 d、q 变换称变换称作两相作两相两相旋转两相旋转变换,简称变换,简称 2s/2r 变换,其中变换,其中 s 表示表示静止,静止,r 表示旋转。表示旋转。 图中,两相交流电流图中,两相交流电流 i 、i 和两个直流电流和两个直流电流 id、iq 产生同样的以同步转速产生同样的以同步转速 1旋转的合成磁动势旋转的合成磁动势 Fs 。由于各绕组匝数都相等,可以消去磁动势。由于各绕组匝数都相等,可以消去磁动势中的匝数,直接用电流表示,例如中的匝数,直接用电流表示,例如 Fs 可以直接可以直接标成标成 is 。 d,q轴和矢量轴和矢量 Fs( is )都以转速

13、)都以转速 1 旋转,旋转,分量分量 id、iq的长短不变,相当于的长短不变,相当于d,q绕组的直流绕组的直流磁动势。磁动势。 但但 、 轴是静止的,轴是静止的, 轴与轴与 M 轴的夹角轴的夹角 随时间而变化,因此随时间而变化,因此 is 在在 、 轴上的分量的长轴上的分量的长短也随时间变化,相当于绕组交流磁动势的瞬时短也随时间变化,相当于绕组交流磁动势的瞬时值。由图可见,值。由图可见, i 、 i 和和 id、iq 之间存在下列之间存在下列关系关系 sincosdiiisincosqiii写成矩阵形式,得写成矩阵形式,得 (3-40) 是两相静止坐标系变换到两相旋转坐标系的变换是两相静止坐标

14、系变换到两相旋转坐标系的变换阵。阵。 式中式中 两相旋转两相旋转两相静止坐标系的变换矩阵两相静止坐标系的变换矩阵r2/s2qdcossinsincosiiCiiiicossinsincosr2/s2C 对式(对式(3-40)两边都左乘以变换阵的逆矩阵,)两边都左乘以变换阵的逆矩阵,即得即得 (3-41) qds2/r2qdcossinsincosiiCiiii则两相旋转坐标系变换到两相静止坐标系的则两相旋转坐标系变换到两相静止坐标系的变换阵是变换阵是 cossinsincoss2/r2C电压和磁链的旋转变换阵也与电流(磁动势)电压和磁链的旋转变换阵也与电流(磁动势)旋转变换阵相同。旋转变换阵相

15、同。 它是指由它是指由d、q轴电流求定子电流和与轴电流求定子电流和与d轴的夹角轴的夹角 1。显然,其变换式应为显然,其变换式应为 2q2dsiiidq1arctanii4.4.直角坐标直角坐标/极坐标变换(极坐标变换(K/P变换)变换) 此方法也同样适用于电压和磁链的变换。此方法也同样适用于电压和磁链的变换。 变换过程变换过程 ABC坐标系 坐标系dq坐标系3/2变换C2s/2r三、异步电动机在三、异步电动机在 、 静止静止坐标系上的坐标系上的 数学模型数学模型 把异步电机在三相把异步电机在三相静止静止ABC坐标系上的坐标系上的数学模型变换到两相数学模型变换到两相坐标系上,由于两相坐标系上,由

16、于两相坐标轴互相垂直,两坐标轴互相垂直,两相绕组之间没有磁的相绕组之间没有磁的耦合,仅此一点,就耦合,仅此一点,就会使数学模型简单了会使数学模型简单了许多。许多。 图图3-9 用两相静止坐标系表示的异步机等用两相静止坐标系表示的异步机等效电路效电路RsLmLmLsLsRsLmLrLmLrRrRr1. 1. 电压方程电压方程rrssrrrmmrrrmmmssmssrrss0000iiiipLRLpLLLpLRLpLpLpLRpLpLRuuuu式中,下标式中,下标s和和r分别表示定子和转子变量;下标分别表示定子和转子变量;下标 和和 分分别表示别表示 轴和轴和 轴变量轴变量. . msm23LL

17、坐标系定子等效两相绕组的互感;坐标系定子等效两相绕组的互感;lsmlsmssLLLLL23lrmlrmsrLLLLL232.2.磁链方程磁链方程rrssrmrmmsmsrrss00000000iiiiLLLLLLLLABC三相坐标系的磁链方程经坐标变换简化为以下三相坐标系的磁链方程经坐标变换简化为以下坐标系磁链方程:坐标系磁链方程: 在两相在两相坐标系中,定子和转子的等效绕组落在互相垂坐标系中,定子和转子的等效绕组落在互相垂直的两根轴上,它们之间没有耦合关系,互感磁链只在同直的两根轴上,它们之间没有耦合关系,互感磁链只在同轴绕组之间存在,所以式中的每个磁链分量只剩下两项。轴绕组之间存在,所以式

18、中的每个磁链分量只剩下两项。 3. 3. 电磁转矩方程电磁转矩方程)(rsrsmpeiiiiLnT)(srsrrmpiiLLn 以上电压方程、磁链方程和电磁转矩方程再加上式以上电压方程、磁链方程和电磁转矩方程再加上式(3-1)运动方程和式()运动方程和式(3-2)转角微分方程构成了)转角微分方程构成了静静止坐标系上的异步电动机数学模型。止坐标系上的异步电动机数学模型。这种在两相静止坐这种在两相静止坐标系上的数学模型又称作标系上的数学模型又称作Kron异步电机方程式或双轴异步电机方程式或双轴原型电机(原型电机(Two Axis Primitive Machine)基本方程式。)基本方程式。4.

19、异步电机在两相同步旋转坐标系(异步电机在两相同步旋转坐标系(dq坐坐 标系)上的数学模型标系)上的数学模型 两相同步旋两相同步旋转转dq坐标系的旋坐标系的旋转速度等于定子转速度等于定子电源的同步角速电源的同步角速度度 1。用。用dq坐标坐标系表示的异步电系表示的异步电动机等效电路如动机等效电路如图图3-10所示。所示。图图3-10 异步电动机在同步旋转异步电动机在同步旋转dq坐标系的坐标系的等效电路等效电路idridsudsuqsiqsiqr1LmLmLmLsLsLrLrRsRsrdquqr=0udr=0LmRrRr1.1.电压方程电压方程vdq坐标系相对于转子的旋转角速度为坐标系相对于转子的

20、旋转角速度为 1 s,即,即转差角速度。式(转差角速度。式(3-46)的电压方程右边系数矩阵的)的电压方程右边系数矩阵的每一项都是非零的,这说明异步机在二相同步旋转每一项都是非零的,这说明异步机在二相同步旋转坐标系下的数学模型仍是强耦合的。坐标系下的数学模型仍是强耦合的。qrdrqsdsrrrsmmsrsrrmsmmm1sss1m1ms1ssqrdrqsdsiiiipLRLpLLLpLRLpLpLLpLRLLpLLpLRuuuu(3-46)2.磁链方程磁链方程qrdrqsdsrmrmmsmsqrdrqsds00000000iiiiLLLLLLLL3.3.电磁转矩方程电磁转矩方程 )(qrdsd

21、rqsmpeiiiiLnT 由于由于dq坐标系与电动机气隙磁场同步旋转,彼此之间坐标系与电动机气隙磁场同步旋转,彼此之间无相对运动,当无相对运动,当A、B、C坐标系中的变量为正弦函数时,坐标系中的变量为正弦函数时,dq坐标系中的变量将是直流量,已经非常接近直流电动坐标系中的变量将是直流量,已经非常接近直流电动机了。但是,直流电动机的电枢回路和励磁回路是解耦机了。但是,直流电动机的电枢回路和励磁回路是解耦的,而异步机在二相同步旋转坐标系下的数学模型仍是的,而异步机在二相同步旋转坐标系下的数学模型仍是强耦合的。强耦合的。 3.3 矢量控制变频调速系统矢量控制变频调速系统 上一节中表明,异步电机的动

22、态数学模型是上一节中表明,异步电机的动态数学模型是一个一个高阶、非线性、强耦合高阶、非线性、强耦合的多变量系统,通过的多变量系统,通过坐标变换,可以使之降阶并化简,但并没有改变坐标变换,可以使之降阶并化简,但并没有改变其非线性、多变量的本质。其非线性、多变量的本质。 需要高动态性能的异步电机调速系统必须在需要高动态性能的异步电机调速系统必须在其动态模型的基础上进行分析和设计。经过多年其动态模型的基础上进行分析和设计。经过多年的潜心研究和实践,有几种控制方案已经获得了的潜心研究和实践,有几种控制方案已经获得了成功的应用,目前应用最广的就是按转子磁链定成功的应用,目前应用最广的就是按转子磁链定向的

23、矢量控制系统。向的矢量控制系统。3.3 矢量控制变频调速系统矢量控制变频调速系统本节提要本节提要v矢量控制的基本思路矢量控制的基本思路v按转子磁链定向的按转子磁链定向的MT同步旋转坐标系中的数同步旋转坐标系中的数学模型学模型v矢量控制基本方程矢量控制基本方程v转速、磁链闭环控制的直接矢量控制系统转速、磁链闭环控制的直接矢量控制系统v转子磁链观测模型转子磁链观测模型v磁链开环转的间接矢量控制系统磁链开环转的间接矢量控制系统3.3.1 矢量控制的基本思路矢量控制的基本思路 上节已经阐明,以产生同样的旋转磁上节已经阐明,以产生同样的旋转磁动势为准则,在三相坐标系上的定子交流动势为准则,在三相坐标系上

24、的定子交流电流电流 iA、 iB 、iC ,通过三相,通过三相/两相变换可以两相变换可以等效成两相静止坐标系上的交流电流等效成两相静止坐标系上的交流电流 i 、i ,再通过同步旋转变换,可以等效成同步旋再通过同步旋转变换,可以等效成同步旋转坐标系上的直流电流转坐标系上的直流电流 id 和和 iq 。 如果观察者站到铁心上与坐标系一起旋如果观察者站到铁心上与坐标系一起旋转,他所看到的便是一台直流电机,可以控转,他所看到的便是一台直流电机,可以控制使交流电机的转子总磁通制使交流电机的转子总磁通 r 就是等效直流就是等效直流电机的磁通,则电机的磁通,则M绕组相当于直流电机的励磁绕组相当于直流电机的励

25、磁绕组,绕组,im 相当于励磁电流,相当于励磁电流,T 绕组相当于伪绕组相当于伪静止的电枢绕组,静止的电枢绕组,it 相当于与转矩成正比的电相当于与转矩成正比的电枢电流。枢电流。 既然异步电机经过坐标变换可以等效成直既然异步电机经过坐标变换可以等效成直流电机,那么,模仿直流电机的控制策略,得流电机,那么,模仿直流电机的控制策略,得到直流电机的控制量,经过相应的坐标反变换,到直流电机的控制量,经过相应的坐标反变换,就能够控制异步电机了。就能够控制异步电机了。 由于进行坐标变换的是电流(代表磁动势)由于进行坐标变换的是电流(代表磁动势)的空间矢量,所以这样通过坐标变换实现的控的空间矢量,所以这样通

26、过坐标变换实现的控制系统就叫作矢量控制系统(制系统就叫作矢量控制系统(Vector Control System)。)。3.3.2 异步电动机在异步电动机在按转子磁场定向的按转子磁场定向的MT同步旋转坐标系中的数学模型同步旋转坐标系中的数学模型v上述是矢量控制的基本思路,其中的上述是矢量控制的基本思路,其中的矢量变换包括三相矢量变换包括三相/两相变换和同步旋两相变换和同步旋转变换。在进行两相同步旋转坐标变转变换。在进行两相同步旋转坐标变换时,只规定了换时,只规定了d,q两轴的相互垂直关两轴的相互垂直关系和与定子频率同步的旋转速度,并系和与定子频率同步的旋转速度,并未规定两轴与电机旋转磁场的相对

27、位未规定两轴与电机旋转磁场的相对位置。置。 n 按转子磁链定向按转子磁链定向 选择选择d轴沿着转子总磁链矢量的方向,并称轴沿着转子总磁链矢量的方向,并称之为之为 M(Magnetization)轴,而)轴,而 q 轴再逆轴再逆时针转时针转90,即垂直于转子总磁链矢量,即垂直于转子总磁链矢量,称之为称之为 T(Torque)轴。)轴。 这样的两相同步旋转坐标系就具体规定这样的两相同步旋转坐标系就具体规定为为 M,T 坐标系,即按转子磁链定向坐标系,即按转子磁链定向(Field Orientation)的坐标系。)的坐标系。异步电动机的坐标变换结构图3/2三相/两相变换; VR同步旋转变换; M轴

28、与轴(A轴)的夹角 3/2VR 等效直流等效直流电动机模型电动机模型ABC iAiBiCiMiTii异步电动机异步电动机把上述等效关系用结构图的形式画出来,便得到下图。把上述等效关系用结构图的形式画出来,便得到下图。从整体上看,输入为从整体上看,输入为A,B,C三相电压,输出为转速三相电压,输出为转速 ,是一台异步电机。从内部看,经过是一台异步电机。从内部看,经过3/2变换和同步旋转变变换和同步旋转变换,变成一台由换,变成一台由 iM 和和 iT 输入,由输入,由 输出的直流电机。输出的直流电机。1. 1. 磁链方程磁链方程 tmTMrmrmmsmstmTM00000000iiiiLLLLLL

29、LL由于由于M轴方向与转子磁链轴方向与转子磁链 一致,显然下式成立:则一致,显然下式成立:则 r,rm0t(3-49) 则则tmTMrmrmmsmsrTM000000000iiiiLLLLLLLL2.2.电压方程电压方程 v由转子磁链方程可得由转子磁链方程可得0mTrtLiLi 将上式带入式(将上式带入式(3-46),并改变坐标轴符号可得),并改变坐标轴符号可得 tmTMrrsmsrrmmm1sss1m1ms1sstmTM000iiiiRLLpLRpLpLLpLRLLpLLpLRuuuu 式中,在第三、四行出现的零元素,说明多变量之间式中,在第三、四行出现的零元素,说明多变量之间的耦合关系减少

30、了,模型得到了简化。的耦合关系减少了,模型得到了简化。 (3-51) 3.3.电磁转矩方程电磁转矩方程 v把把dq坐标系下的电磁转矩方程中的下标坐标系下的电磁转矩方程中的下标ds、qs分别替换成分别替换成M、T,下标,下标dr、qr分别替换成分别替换成m、t就得到就得到MT坐标系下的电磁转矩方程:坐标系下的电磁转矩方程:)(tMmTmpeiiiiLnT3.3.3 矢量控制基本方程矢量控制基本方程 v在沿转子磁场定向的在沿转子磁场定向的M、T同步旋转坐标系中,对同步旋转坐标系中,对于笼型转子异步电动机,由于转子短路,有于笼型转子异步电动机,由于转子短路,有um = ut = 0,则电压方程可简化

31、为,则电压方程可简化为 tmTMrrsmsrrmmm1sss1m1ms1ssTM00000iiiiRLLpLRpLpLLpLRLLpLLpLRuu将电压方程矩阵的第三行单独写出来,得将电压方程矩阵的第三行单独写出来,得 v由磁链方程(由磁链方程(3-49)可得)可得 )(0mrMmmrmrMmmriLiLpiRpiLpiLiRrmMrmLiLi(3-55) 由以上两式,得由以上两式,得 rmrM1LpTi即即 Mrmr1ipTL式中,式中, 为转子励磁时间常数。为转子励磁时间常数。 rrrRLT 3.3.3 矢量控制基本方程矢量控制基本方程viM被称为定子的励磁电流分量。被称为定子的励磁电流分

32、量。v由式(由式(3-513-51)可得:)可得: TrmtiLLi 上式说明,上式说明,M轴按转子磁场方向定向后,与轴按转子磁场方向定向后,与之正交的之正交的T轴上定子电流分量的变化会立即引起轴上定子电流分量的变化会立即引起相应转子电流分量的变化,不存在滞后。相应转子电流分量的变化,不存在滞后。 3.3.3 矢量控制基本方程矢量控制基本方程v将上式及式(将上式及式(3-50)代入电磁转矩方程,可得:)代入电磁转矩方程,可得: rTrmpeiLLnT 这个转矩关系式很简单,同直流电动机的转矩这个转矩关系式很简单,同直流电动机的转矩公式一样。此式表明,公式一样。此式表明, 。iT被称为转矩电流被

33、称为转矩电流分量。分量。 3.3.3 矢量控制基本方程矢量控制基本方程v转差角频率转差角频率MTrs1iiT 以上转差角频率方程式、电磁转矩方程和转以上转差角频率方程式、电磁转矩方程和转子磁链方程就构成了按转子磁场定向的矢量控制子磁链方程就构成了按转子磁场定向的矢量控制系统的基本方程式。在实际控制中,如果能够实系统的基本方程式。在实际控制中,如果能够实现电流现电流iM和和iT的完全解耦,异步电动机便可获得的完全解耦,异步电动机便可获得类似于直流电动机的特性。类似于直流电动机的特性。 n 按转子磁链定向的意义按转子磁链定向的意义l式式(3-57)或式或式(3-58)表明,转子磁链仅由定子电表明,

34、转子磁链仅由定子电流励磁分量产生,与转矩分量无关,从这个意义上看,流励磁分量产生,与转矩分量无关,从这个意义上看,定子电流的励磁分量与转矩分量是解耦的定子电流的励磁分量与转矩分量是解耦的。l 式(式(3-57)还表明,)还表明, r 与与 iM之间的传递函数是之间的传递函数是 一阶一阶惯性环节,时间常数为转子磁链励磁时间常数,当励惯性环节,时间常数为转子磁链励磁时间常数,当励磁电流分量磁电流分量iM突变时,突变时, r 的变化要受到励磁惯性的阻的变化要受到励磁惯性的阻挠,这和直流电机励磁绕组的惯性作用是一致的。挠,这和直流电机励磁绕组的惯性作用是一致的。 磁 链磁 链调节调节磁链磁链观测观测

35、VR-12/3M3测速测速ASR*+_*+_+PI-TeTe*iT*iMVSI3.3.4 转速、磁链闭环的直接矢量控制系统转速、磁链闭环的直接矢量控制系统 工作原理工作原理v转速正、反向和弱磁升速。转速正、反向和弱磁升速。v磁链给定信号由函数发生程序获得。磁链给定信号由函数发生程序获得。v变频调速系统的速度调节关键在于对电磁转矩变频调速系统的速度调节关键在于对电磁转矩的准确控制,系统中转速调节器的输出作为电的准确控制,系统中转速调节器的输出作为电磁转矩的给定,实现了电磁转矩的闭环控制。磁转矩的给定,实现了电磁转矩的闭环控制。定子电流转矩分量的参考信号由转矩调节器的定子电流转矩分量的参考信号由转

36、矩调节器的输出给定,相当于双闭环直流调速系统的电枢输出给定,相当于双闭环直流调速系统的电枢电流给定;电流给定; 特特 点点v电机本质上是电机本质上是“自控自控” 的。系统的频率不象在标量控制系的。系统的频率不象在标量控制系统中被直接控制,而是借助统中被直接控制,而是借助磁场定向角磁场定向角 (或单位矢量或单位矢量)实现实现了对相位和频率的控制。了对相位和频率的控制。v不必担心像标量控制那样在超过转矩不必担心像标量控制那样在超过转矩Tem工作点时系统出现工作点时系统出现的不稳定问题。矢量控制通过限制电流的不稳定问题。矢量控制通过限制电流Is( )在安全在安全电流范围内,从而可自动将工作点限制在稳

37、定区域。电流范围内,从而可自动将工作点限制在稳定区域。v该系统带有转子磁链反馈,优点是实现了磁链和转矩的完该系统带有转子磁链反馈,优点是实现了磁链和转矩的完全解耦控制,精度高,可用于要求高性能调速的场合,但全解耦控制,精度高,可用于要求高性能调速的场合,但系统构成和运算较复杂。系统构成和运算较复杂。 22smstii3.3.5 转子磁链观测模型转子磁链观测模型 电压模型磁链观测器电压模型磁链观测器 利用定子电压和电流信利用定子电压和电流信号重构转子磁链信号号重构转子磁链信号 通过检测电动机的定子通过检测电动机的定子电流和转速信号来重电流和转速信号来重构转子磁链信号构转子磁链信号 电流模型磁链观

38、测器电流模型磁链观测器3.3.6 磁链开环的间接矢量控制系统磁链开环的间接矢量控制系统 在磁链闭环的直接矢量控制系统中,转子磁链反在磁链闭环的直接矢量控制系统中,转子磁链反馈信号是由磁链模型获得的,受电机参数馈信号是由磁链模型获得的,受电机参数 Tr 和和 Lm 变变化的影响,造成控制的不准确性。化的影响,造成控制的不准确性。 为避免复杂的磁链观测算法及运算偏差对闭环控制为避免复杂的磁链观测算法及运算偏差对闭环控制的影响,磁链开环的间接矢量控制在工业应用中比较的影响,磁链开环的间接矢量控制在工业应用中比较流行。流行。常利用矢量控制方程中的转差公式(常利用矢量控制方程中的转差公式(3-61),构

39、),构成转差型的矢量控制系统。成转差型的矢量控制系统。K/PASRACRmrLpT1CSIp1URrmTL*s*Ti*Mi*r*si*sidL1U1TAM3TG矢量控制器转差频率矢量控制系统的构成转差频率矢量控制系统的构成 系统的主要特点系统的主要特点(1)转速调节器)转速调节器ASR的输出正比于转矩给定信的输出正比于转矩给定信号,实际上是号,实际上是由矢量控制方程式可求出定子电流转矩分量由矢量控制方程式可求出定子电流转矩分量给定信号给定信号 i*T 和转差频率给定信号和转差频率给定信号 *s,其关系为,其关系为 *emprTLnL*ermpr*TTLnLi*Trrm*siTL3.3.6 磁链

40、开环的间接矢量控制系统磁链开环的间接矢量控制系统(2)定子电流励磁分量给定信号)定子电流励磁分量给定信号 i*M 和转子和转子磁链给定信号磁链给定信号 *r 之间的关系是靠式(之间的关系是靠式(3-57)建立的。建立的。rmrM1LpTi (3) i*sm和和i*st 经直角坐标经直角坐标/极坐标变换器极坐标变换器K/P合成合成后,产生定子电流幅值给定信号后,产生定子电流幅值给定信号 i*s 和相角给定和相角给定信号信号 *s 。前者经电流调节器。前者经电流调节器ACR控制定子电流控制定子电流的大小,后者则控制逆变器换相的时刻,从而决的大小,后者则控制逆变器换相的时刻,从而决定定子电流的相位。

41、定子电流相位能否得到及时定定子电流的相位。定子电流相位能否得到及时的控制对于动态转矩的发生极为重要。的控制对于动态转矩的发生极为重要。 在动态过程中,实际参数与矢量控制方程中在动态过程中,实际参数与矢量控制方程中所用的参数可能不一致,例如由于温度变化和频所用的参数可能不一致,例如由于温度变化和频率不同而影响转子电阻率不同而影响转子电阻Rr,进而影响转子时间常,进而影响转子时间常数数Tr;由于饱和程度的不同而影响电感等等。那;由于饱和程度的不同而影响电感等等。那么,利用给定的参数求得的和就会偏离实际的数么,利用给定的参数求得的和就会偏离实际的数值,在控制中造成磁场定向的不准确。为了解决值,在控制

42、中造成磁场定向的不准确。为了解决这个问题,可以采用参数辨识和自适应控制的方这个问题,可以采用参数辨识和自适应控制的方法进行改进。法进行改进。 UDCM3信号调理及滤波驱动单元数字控制信号转换A/D显 示DSP TMS320LF2407A键 盘PWM发生逆变器光电编码器转速给定+-矢量控制变频调速系统硬件电路矢量控制变频调速系统硬件电路3.3.7 矢量控制变频调速系统的实现矢量控制变频调速系统的实现 v 为实现实时全数字化矢量控制变频调速,系为实现实时全数字化矢量控制变频调速,系统采用了统采用了TI公司的公司的TMS320LF2407A DSP为控制为控制核心。系统的内环为电流调节环,采样周期为

43、核心。系统的内环为电流调节环,采样周期为100s; ;外环为速度调节环,采样周期为外环为速度调节环,采样周期为1ms。在。在通用定时器通用定时器1下溢中断处理程序中调用电流环调节下溢中断处理程序中调用电流环调节子程序或速度环调节子程序,并且电流环中断优子程序或速度环调节子程序,并且电流环中断优先级比速度环中断优先级高。先级比速度环中断优先级高。 v目前矢量控制的交流变频调速系统已走向实用化,目前矢量控制的交流变频调速系统已走向实用化,成功地应用于轧机主传动、电力机车牵引系统、数成功地应用于轧机主传动、电力机车牵引系统、数控机床和电动汽车中。控机床和电动汽车中。 v例如,大功率轧钢机主传动要求有

44、很快的动态响应例如,大功率轧钢机主传动要求有很快的动态响应和相当高的过载能力,一直用直流电机,由于直流和相当高的过载能力,一直用直流电机,由于直流电动机的换向器和电刷在大功率方面问题较多,而电动机的换向器和电刷在大功率方面问题较多,而且维护工作量大,在且维护工作量大,在1980年以后逐步用交流异步电年以后逐步用交流异步电动机或同步电动机变频调速代替直流电动机调速。动机或同步电动机变频调速代替直流电动机调速。应用应用v冷轧机的调速指标如下:冷轧机的调速指标如下:v电动机容量电动机容量 30006000kWv电动机转速电动机转速 1500r/minv调速响应调速响应 60rad/sv调速精度调速精

45、度 0.0004%v力矩控制精度力矩控制精度 2%v20世纪世纪80年代,由于电力电子高压大功率全控型年代,由于电力电子高压大功率全控型器件器件GTO的问世,使变频器进一步小型化、轻量的问世,使变频器进一步小型化、轻量化、大功率化。这种新型的变频器在大功率内燃化、大功率化。这种新型的变频器在大功率内燃机车和电气机车上的成功应用,促进了交流传动机车和电气机车上的成功应用,促进了交流传动机车更迅速发展。机车更迅速发展。v我国广州地铁一号线和北京地铁三期工程交流传我国广州地铁一号线和北京地铁三期工程交流传动车辆是分别从日本和德国引进的,均采用动车辆是分别从日本和德国引进的,均采用GTO逆变器。逆变器

46、。3.4 直接转矩控制变频调速系统直接转矩控制变频调速系统v概概 述述 直接转矩控制系统简称直接转矩控制系统简称 DTC ( Direct Torque Control) 系统,是继矢量控制系统系统,是继矢量控制系统之后发展起来的另一种高动态性能的交流之后发展起来的另一种高动态性能的交流电动机变压变频调速系统,电动机变压变频调速系统,1985年由德国年由德国鲁尔大学鲁尔大学Depenbrock教授提出。由于利用教授提出。由于利用转矩反馈直接控制电机的电磁转矩,因而转矩反馈直接控制电机的电磁转矩,因而得名。得名。3.4.1 基本思路基本思路v 直接转矩控制是基于在定子坐标系下建立直接转矩控制是基

47、于在定子坐标系下建立的交流电动机数学模型,直接控制电动机的磁的交流电动机数学模型,直接控制电动机的磁链和转矩,并用定子磁链定向代替转子磁链定链和转矩,并用定子磁链定向代替转子磁链定向。它不需要模仿直流电动机的控制,所需要向。它不需要模仿直流电动机的控制,所需要的信号处理工作比较简单。的信号处理工作比较简单。 v 直接转矩控制强调的是转矩的直接控制效直接转矩控制强调的是转矩的直接控制效果,因此它并不强调获得理想的正弦波波形,果,因此它并不强调获得理想的正弦波波形,而是采用电压空间矢量和近似圆形磁链轨迹的而是采用电压空间矢量和近似圆形磁链轨迹的概念。概念。3.4.2 直接转矩控制系统的原理直接转矩

48、控制系统的原理图3-19 直接转矩控制系统原理框图逆变器异步电动机n 结构特点结构特点pASR的输出作为电磁转矩的给定信号;的输出作为电磁转矩的给定信号;l设置转矩控制内环,它可以抑制磁链变化对设置转矩控制内环,它可以抑制磁链变化对转速子系统的影响,从而使转速和磁链子系转速子系统的影响,从而使转速和磁链子系统实现了近似的解耦。统实现了近似的解耦。p转矩和磁链的控制器转矩和磁链的控制器 用滞环控制器或用滞环控制器或bang-bang控制器取代通常控制器取代通常的的PI调节器。调节器。n 控制特点控制特点 与与VC系统一样,它也是分别控制异步电动系统一样,它也是分别控制异步电动机的转速和磁链,但在

49、具体控制方法上,机的转速和磁链,但在具体控制方法上,DTC系统与系统与VC系统不同的特点是:系统不同的特点是:(1)直接转矩控制基于在)直接转矩控制基于在定子坐标系下建立的定子坐标系下建立的交流电动机数学模型交流电动机数学模型,它不需要模仿直流电动,它不需要模仿直流电动机的控制,省掉了矢量旋转变换等复杂的变换机的控制,省掉了矢量旋转变换等复杂的变换与运算,因此,它所需要的信号处理工作比较与运算,因此,它所需要的信号处理工作比较简单。简单。 2)转矩和磁链的控制采用双位转矩和磁链的控制采用双位式式bang-bang控制器控制器,并在,并在 PWM 逆逆变器中直接用这两个控制信号产生电变器中直接用

50、这两个控制信号产生电压的压的SVPWM 波形,从而避开了将定波形,从而避开了将定子电流分解成转矩和磁链分量,省去子电流分解成转矩和磁链分量,省去了旋转变换和电流控制,简化了控制了旋转变换和电流控制,简化了控制器的结构。器的结构。 3)选择定子磁链作为被控量选择定子磁链作为被控量,计算磁链的模,计算磁链的模型可以不受转子参数变化的影响,提高了控制型可以不受转子参数变化的影响,提高了控制系统的鲁棒性。系统的鲁棒性。 4)由于采用了直接转矩控制,在加减速或负)由于采用了直接转矩控制,在加减速或负载变化的动态过程中,可以获得快速的转矩响载变化的动态过程中,可以获得快速的转矩响应,但必须注意限制过大的冲

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁