离散数学课后习题集标准答案(第三章).doc

举报
资源描述
,. 证明 :设A上定义的二元关系R为: <<x,y>, <u,v>>∈R= ① 对任意<x,y>∈A,因为=,所以 <<x,y>, <x,y>>∈R 即R是自反的。 ② 设<x,y>∈A,<u,v>∈A,若 <<x,y>, <u,v>>∈R==<<u,v>,<x,y>>∈R 即R是对称的。 ③ 设任意<x,y>∈A,<u,v>∈A,<w,s>∈A,对 <<x,y>, <u,v>>∈R∧<<u,v>, <w,s>>∈R (=)∧(=)= <<x,y>, <w,s>>∈R 故R是传递的,于是R是A上的等价关系。 3-10.6 设R是集合A 上的对称和传递关系,证明如果对于A中的每一个元素a,在A中同时也存在b,使在R之中,则R是一个等价关系。 证明 :对任意a∈A,必存在一个b∈A,使得<a,b>∈R. 因为R是传递的和对称的,故有: <a,b>∈R∧<b, c>∈R<a, c>∈R<c,a>∈R 由<a,c>∈R∧<c, a>∈R<a,a>∈R 所以R在A上是自反的,即R是A上的等价关系。 3-10.7 设R1和R2是非空集合A上的等价关系,试确定下述各式,哪些是A上的等价关系,对不是的式子,提供反例证明。 a)(AA)-R1; b)R1-R2; c)R12; d) r(R1-R2)(即R1-R2的自反闭包)。 解 a)(AA)-R1不是A上等价关系。例如: A={a,b},R1={<a,a>,<b,b>} AA={<a,a>,<a,b>,<b,a>,<b,b>} (AA)-R1={<a,b>,<b,a>} 所以(AA)-R1不是A上等价关系。 b)设 A={a,b,c} R1={<a,b>,<b,a>,<b,c>,<c,b>,<a,c>,<c,a>,<a,a>,<b,b>,<c,c>} R2={<a,a>,<b,b>,<c,c>,<b,c>,<c,b>} R1-R2={<a,b>,<b,a>,<a,c>,<c,a>} 所以R1和R2是A上等价关系,但R1-R2不是A上等价关系。 c)若R1是A上等价关系,则 <a,a>∈R1<a,a>∈R1○R1 所以R12是A上自反的。 若<a,b>∈R12则存在c,使得<a, c>∈R1∧<c,b>∈R1。因R1对称,故有 <b, c>∈R1∧<c,a>∈R1<b, a>∈R12 即R12是对称的。 若<a,b>∈R12∧<b, c>∈R12,则有 <a,b>∈R1○R1∧<b, c>∈R1○R1 ($e1)(<a, e1>∈R1∧<e1, b>∈R1) ∧($e2)(<b, e2>∈R1∧<e2, c>∈R1) <a,b>∈R1∧<b, c>∈R1(∵R1传递) <a,c>∈R12 即R12是传递的。 故R12是A上的等价关系。 d)如b)所设,R1和R2是A上的等价关系,但 r(R1-R2)=(R1-R2)∪IA ={<a,b>, <b,a>, <a,c>,<c,a>,<a,a>,<b,b>, <c,c>} 不是A上的等价关系。 3-10.8 设C*是实数部分非零的全体复数组成的集合,C*上的关系R定义为:(a+bi)R(c+di)ac>0,证明R是等价关系,并给出关系R的等价类的几何说明。 证明:(1)对任意非零实数a,有a2>0(a+bi)R(a+bi) 故R在C*上是自反的。 (2) 对任意(a+bi)R(c+di)ac>0, 因ca=ac>0(c+di)R(a+bi), 所以R在C*上是对称的。 (3)设(a+bi)R(c+di) ,(c+di)R(u+vi),则有ac>0cu>0 若c>0,则a>0u>0 au>0 若c<0,则a<0u<0 au>0 所以(a+bi)R(u+vi),即R在C*上是传递的。 关系R的等价类,就是复数平面上第一、四象限上的点,或第二、三象限上的点,因为在这两种情况下,任意两个点(a,b),(c,d),其横坐标乘积ac>0。 3-10.9 设Π和Π是非空集合A上的划分,并设R和R分别为由Π和Π诱导的等价关系,那么Π细分Π的充要条件是R R。 证明:若Π细分Π。由假设aRb,则在Π中有某个块S,使得a,b∈S,因Π细分Π,故在Π中,必有某个块S,使S S,即a,b∈S,于是有aRb,即R R。 反之,若R R,令S为H的一个分块,且a∈S,则S=[a]R={x|xRa} 但对每一个x,若xRa,因R R,故xRa,因此{x|xRa} {x|xRa}即[a]R [a]R 设S=[a]R,则S S 这就证明了Π细分Π。 3-10.10 设Rj是表示I上的模j等价关系,Rk是表示I上的模k等价关系,证明I/Rk细分I/Rj当且仅当k是j的整数倍。 证明:由题设Rj={|x≡y(modj)} Rk={|x≡y(modk)} 故∈Rjx-y=cj (对某个c∈I) ∈Rkx-y=dk (对某个d∈I) a)假设I/Rk细分I/Rj,则Rk Rj 因此∈Rk∈Rj 故k-0=1k=cj (对某个c∈I) 于是k是j的整数倍。 b)若对于某个r∈I,有k=rj则: ∈Rkx-y=ck (对某个c∈I) x-y=crj (对某个c,r∈I) ∈Rj 因此,Rk Rj,于是I/Rk细分I/Rj fjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owghfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasasdhgaowirghaoghaa;owgfjasas
展开阅读全文
相关搜索
温馨提示:
taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。

当前位置:首页 > 教育专区 > 教案示例


本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁