资源描述
/*
安徽理工大学
教案首页
第 1 次课 授课时间 2017 年 9 月 14 日 教案完成时间: 2017 年 9 月 10 日
课程名称
离散数学
年 级
2017 级
专业、层次
计算机学院(本科)
教 师
专业技术
职 务
讲师
授课方式
(大、小)
大
学时
2
授课题目(章、节)
4.1谓词和量词,4.2一阶语言
基本教材或主要参考书
《离散数学》 刘爱民 北京邮电大学出版社
教学目的和要求:
1.全称量词,存在量词,存在唯一量词;
2. 一阶语言、解释和赋值
大体内容与时间安排,教学方法:
1. 介绍全称量词,存在量词,存在唯一量词,练习将命题符号化(45min);
2.介绍一阶语言,对于具体的公式,给出解释和赋值(45min);
教学重点、难点:
1. 命题符号化
2. 公式的解释和赋值
(主要内容题纲)
4.1谓词和量词
1. 全称量词,
全称量词(Universal Quantifier):在自然语言中“所有的”、“一切”、“任意的”、“每一个”等表示数量的词,称为全称量词。它用于描述讨论范围中的全部个体,用符号“∀”表示。
2. 存在量词,
存在量词(Existential Quantifier):用符号“∃”表示,对应自然语言中“存在一些”、“至少有一个”等表示数量的词。∃xF(x)表示个体域中存在个体具有性质F。
3. 存在唯一量词
4. 将具体命题符号化
例2.1-6 将下列命题符号化。
⑴好人自有好报。
⑵有会说话的机器人;
⑶没有免费的午餐;
⑷在北京工作的人未必都是北京人。
解 在本题中没有指定个体域,故取个体域为全总个体域。
⑴设F(x):x是好人;G(x):x会有好报,则命题符号化为:∀x(F(x)→G(x))。
⑵设F(x):x是机器人;G(x):x是会说话的,则命题符号化为:∃x(F(x)∧G(x))。
⑶设M(x):x是午餐;F(x): x是免费的,则命题符号化为:┐∃x(M(x)∧F(x))。这句话可作如下叙述,“所有的午餐都不是免费的”,故命题可符号化为:∀x(M(x)→┐F(x))。因为在含义上这句话和题目的是一样的,所以可以看出,┐∃x(M(x)∧F(x))和∀x(M(x)→┐F(x))是等价的,后面还将给出具体的证明。
⑷设F(x):x在北京工作;G(x): x是北京人,则命题符号化为:∀x(F(x)→G(x))。这句话也可作如下叙述,“存在着在北京工作的非北京人”,故可符号化为:∃x(F(x)∧G(x))。因为在含义上这句话和题目是一样的。所以可以看出,∀x(F(x)→G(x))和∃x(F(x)∧G(x))是等价的,后面也将给出具体的证明。
4.2一阶语言
1. 一阶语言
2. 解释和赋值
一个公式A的一个解释(Interpretation) I 应由以下四部分组成:
⑴非空个体域D;
⑵公式A中的每个个体常元指定为D中一个特定元素;
⑶公式A中的n元函数指定为Dn到D的一个特定的函数;
⑷公式A中的n元谓词指定为Dn到{0,1}的一个特定的谓词(命题函数)。
3. 公式的分类
设A为一个谓词公式,如果A在任何解释下都是真的,则称A为逻辑有效式(Universal)或称为永真式;
如果A在任何解释下都是假的,则称A为矛盾式(Contradiction)或称为永假式;
若至少存在一个解释使A为真,则称A为可满足式(Satisfable)。
4. 将具体的公式解释和赋值
(教案末页)
本节课小结
1. 全称量词,存在量词,存在唯一量词(2min);
2. 一阶语言、解释和赋值(2min);
复习思考题
作业题
课后习题1,3
安徽理工大学
教案首页
第 1 次课 授课时间 2017 年 9 月 14 日 教案完成时间: 2017 年 9 月 10 日
课程名称
离散数学
年 级
2017 级
专业、层次
计算机学院(本科)
教 师
专业技术
职 务
讲师
授课方式
(大、小)
大
学时
2
授课题目(章、节)
4.3 一阶逻辑等值演算,4.4一阶逻辑形式推理
基本教材或主要参考书
《离散数学》 刘爱民 北京邮电大学出版社
教学目的和要求:
1.等值演算;前束范式
2.推理定律,推理规则
大体内容与时间安排,教学方法:
1. 介绍等值演算;前束范式,将具体公式化为前束范式(45min);
2. 介绍推理定律,推理规则,将具体推理符号化并加以证明(45min);
教学重点、难点:
1. 将公式化为前束范式;
2. 推理的证明
(主要内容题纲)
4.3 一阶逻辑等值演算
1. 等值演算;
设A、B是谓词逻辑中任意的两谓词公式,若A↔B为逻辑有效式,则称A与B是等值的,记作A⇔B,称“A⇔B”为谓词逻辑等值式(Equivalent)
定理 量词辖域收缩与扩张等值式。
⑴①∀x(A(x)∨B)⇔∀xA(x)∨B;
②∀x(A(x)∧B)⇔∀xA(x)∧B;
③∀x(A(x)→B)⇔∃xA(x)→B;
④∀x(B→A(x))⇔B→∀xA(x)。
⑵①∃x(A(x)∨B)⇔∃xA(x)∨B;
②∃x(A(x)∧B)⇔∃xA(x)∧B;
③∃x(A(x)→B)⇔∀xA(x)→B;
④∃x(B→A(x))⇔B→∃xA(x)。
定理 量词分配等值式。
⑴∀x(A(x)∧B(x))⇔∀xA(x)∧∀xB(x);
⑵∃x(A(x)∨B(x))⇔∃xA(x)∨∃xB(x)。
其中⑴称为∀对∧的分配;⑵称为∃对∨的分配。
定理 量词移位等值式。
⑴∀x∀yA(x,y)⇔∀y∀xA(x,y);
⑵∃x∃yA(x,y)⇔∃y∃xA(x,y)。
注意 不同名量词间的次序是不可随意变更的。
2. 前束范式,
3.公式化为前束范式
4.4一阶逻辑形式推理
1. 推理定律,
2. 推理规则,
全称量词消去规则(简称US):
①; ②。
全称量词引入规则(简称UG):。
存在量词引入规则(简称EG):
①; ②
3. 推理符号化并加以证明;
(教案末页)
本节课小结
1. 等值演算;前束范式(2min);
2. 推理定律,推理规则(2min);
复习思考题
作业题
课后习题5,7,8,9
安徽理工大学
教案首页
第 1 次课 授课时间 2017 年 9 月 14 日 教案完成时间: 2017 年 9 月 10 日
课程名称
离散数学
年 级
2017 级
专业、层次
计算机学院(本科)
教 师
专业技术
职 务
讲师
授课方式
(大、小)
大
学时
2
授课题目(章、节)
5.1集合的概念及表示,5.2 集合运算
基本教材或主要参考书
《离散数学》 刘爱民 北京邮电大学出版社
教学目的和要求:
1.集合的基本概念;
2. 集合的常见运算
大体内容与时间安排,教学方法:
1. 集合的定义,元素与集合的关系,集合与集合的关系,幂集(45min);
2.并集,交集,差集,对称差集,广义交,广义并(45min);
教学重点、难点:
1. 幂集
2. 差集,对称差集,广义交,广义并
(主要内容题纲)
5.1集合的概念及表示
1. 集合的定义,
集合是不能精确定义的基本概念。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
2. 元素与集合的关系,
元素和集合之间的关系是隶属关系,即属于或不属于,属于记作∈,不属于记作,
3. 集合与集合的关系,
设A,B为集合,如果B中的每个元素都是A中的元素,则称B是A的子集合,简称子集。这时也称B被A包含,或A包含B,记作BA。
4. 幂集
设A为集合,把A的全部子集构成的集合叫做A的幂集,记作P(A)
5.2 集合运算
1.并集,
设A,B为集合,A与B的并集A∪B,A∪B={x|x∈A∨x∈B }
2.交集,
设A,B为集合,交集A∩B,A∩B={x|x∈A∧x∈B }
3.差集,对称差集,
设A,B为集合,B对A的相对补集A-B,A-B={x|x∈A∧xB }
设A,B为集合,A与B的对称差集AB定义为:
AB=(A-B)∪(B-A)
4.广义交,广义并
(教案末页)
本节课小结
1. 集合的基本概念(2min);
2. 集合的常见运算(2min);
复习思考题
作业题
课后练习1,4
安徽理工大学
教案首页
第 1 次课 授课时间 2017 年 9 月 14 日 教案完成时间: 2017 年 9 月 10 日
课程名称
离散数学
年 级
2017 级
专业、层次
计算机学院(本科)
教 师
专业技术
职 务
讲师
授课方式
(大、小)
大
学时
2
授课题目(章、节)
5.3 集合定律,5.4有限集的计数问题
基本教材或主要参考书
《离散数学》 刘爱民 北京邮电大学出版社
教学目的和要求:
1. 集合定律;
2. 有限集的计数问题
大体内容与时间安排,教学方法:
1. 集合定律:等幂律,排中律,矛盾律,吸收律(45min);
2. 有限集的计数问题:容斥原理,及其推广(45min);
教学重点、难点:
1. 容斥原理,及其推广
(主要内容题纲)
5.3 集合定律
1. 幂等律 A∪A=A(6.1)
A∩A=A(6.2)
2. 结合律 (A∪B)∪C=A∪(B∪C)(6.3)
(A∩B)∩C=A∩(B∩C)(6.4)
3. 交换律 A∪B=B∪A(6.5)
A∩B=B∩A(6.6)
4. 分配律 A∪(B∩C)=(A∪B)∩(A∪C) (6.7)
A∩(B∪C)=(A∩B)∪(A∩C) (6.8)
5. 同一律 A∪=A(6.9)
A∩E=A(6.10)
6. 零律 A∪E=E(6.11)
A∩= (6.12)
7. 排中律 A∪~A=E(6.13)
8. 矛盾律 A∩~A=(6.14)
9. 吸收律 A∪(A∩B)=A(6.15)
A∩(A∪B)=A(6.16)
10. 德摩根律 A-(B∪C)=(A-B)∩(A-C)(6.17)
A-(B∩C)=(A-B)∪(A-C)(6.18)
~(B∪C)=~B∩~C(6.19)
~(B∩C)=~B∪~C(6.20)
~=E(6.21)
~E=(6.22)
11. 双重否定律 ~(~A)=A (6.23)
5.4有限集的计数问题
容斥原理:
card(A∪B)= card(A)+ card(B) —card(A∩B)
(教案末页)
本节课小结
1. 集合定律(2min);
2. 容斥原理,及其推广(2min);
复习思考题
作业题
课后练习5,7,8,9
展开阅读全文
相关搜索