2018版高中数学人教B版必修五学案:第一单元 §1.2 应用举例(一) .docx

上传人:荣*** 文档编号:2617275 上传时间:2020-04-24 格式:DOCX 页数:8 大小:991.42KB
返回 下载 相关 举报
2018版高中数学人教B版必修五学案:第一单元 §1.2 应用举例(一) .docx_第1页
第1页 / 共8页
2018版高中数学人教B版必修五学案:第一单元 §1.2 应用举例(一) .docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《2018版高中数学人教B版必修五学案:第一单元 §1.2 应用举例(一) .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修五学案:第一单元 §1.2 应用举例(一) .docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、学习目标1.会用正弦、余弦定理解决生产实践中有关不可到达点距离的测量问题.2.培养提出问题、正确分析问题、独立解决问题的能力知识点一常用角思考试画出“北偏东60”和“南偏西45”的示意图梳理在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空:(1)方向角指北或指南方向线与目标方向所成的小于_度的角(2)仰角与俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线_时叫仰角,目标视线在水平线_时叫俯角(如下图所示)(3)张角由C点看AB的张角指的是角_知识点二测量方案思考1如图是北京故宫的角楼,设线段AB表示角楼的高度,在宫墙外护城河畔的马路边,选位置C,设CC为测量

2、仪器的高,过点C的水平面与AB相交于点B,由测点C对角楼进行测量,你认为通过测量的数据能求出角楼的高度吗?思考2如图,如果移动测量仪CC到DD(测量仪高度不变),想想看,我们能测得哪些数据,使问题得以解决?梳理测量某个量的方法有很多,但是在实际背景下,有些方法可能没法实施,比如直接测量某楼高这个时候就需要设计方案绕开障碍间接地达到目的设计测量方案的基本任务是把目标量转化为可测量的量,并尽可能提高精确度一般来说,基线越长,精确度越高类型一测量两个不能到达点之间的距离问题例1如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为km,ADBCDB30,ACD60,ACB45,求A、B两点间的

3、距离反思与感悟测量两个不可到达的点之间的距离,一般是把求距离问题转化为应用余弦定理求三角形的边长问题,然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,运用正弦定理解决跟踪训练1要测量河对岸两地A、B之间的距离,在岸边选取相距100米的C、D两点,并测得ACB75,BCD45,ADC30,ADB45(A、B、C、D在同一平面内),求A、B两地的距离类型二求高度命题角度1测量仰角(俯角)求高度例2如图所示,D,C,B在地平面同一直线上,DC10 m,从D,C两地测得A点的仰角分别为30和45,则A点离地面的高AB等于()A10 mB5 mC5(1) mD5(1) m反思与感悟利

4、用正弦、余弦定理来解决实际问题时,要从所给的实际背景中,进行加工、提炼,抓住本质,抽象出数学模型,使之转化为解三角形问题跟踪训练2江岸边有一炮台C高30 m,江中有两条船B,A,船与炮台底部D在同一直线上,由炮台顶部测得俯角分别为45和30,则两条船相距_ m.命题角度2测量方位角求高度例3如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600 m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD_m.反思与感悟此类问题特点:底部不可到达,且涉及与地面垂直的平面,观测者两次观测点所在直线不经过“目标物”,解决办法是把目标高

5、度转化为地平面内某量,从而把空间问题转化为平面内解三角形问题跟踪训练3如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60,再由点C沿北偏东15方向走10 m到位置D,测得BDC45,则塔AB的高是()A10 m B10 mC10 m D10 m1如图,在河岸AC上测量河的宽度BC,测量下列四组数据,较适宜的是 ()Aa,c, Bb,c, Cc,a, Db,2如图,某人向正东方向走了x千米,然后向右转120,再朝新方向走了3千米,结果他离出发点恰好千米,那么x的值是_3甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60,从甲楼顶望乙楼顶的俯角为30

6、,则甲、乙两楼的高分别是_m,_m.4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,ACB45,CAB105,则A、B两点的距离为_m.1运用正弦定理就能测量“一个可到达点与一个不可到达点间的距离”,而测量“两个不可到达点间的距离”要综合运用正弦定理和余弦定理测量“一个可到达点与一个不可到达点间的距离”是测量“两个不可到达点间的距离”的基础,这两类测量距离的题型间既有联系又有区别2正弦、余弦定理在实际测量中的应用的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集

7、中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解答案精析问题导学知识点一思考梳理(1)90(2)上方下方(3)ACB知识点二思考1可测得点A的仰角的大小在ABC中,三条边的长度都无法测出,因而AB无法求得思考2如图所示,在点B,C,D构成的三角形中,可以测得和的大小,又可测得CD的长,这样,我们就可以根据正弦定理求出边BC的长,从而在RtABC中,求出AB的长使问题得到解决题型探究类型一例1解在BCD中,CBD1803010545,由正弦定理得,则BC (k

8、m)在ACD中,CAD180606060,ACD为正三角形,ACCD(km)在ABC中,由余弦定理得AB2AC2BC22ACBCcos 452,AB(km)河对岸A、B两点间的距离为 km.跟踪训练1解如图在ACD中,CAD180(12030)30,ACCD100(米)在BCD中,CBD180(4575)60,由正弦定理得BC200sin 75(米)在ABC中,由余弦定理,得AB2(100)2(200sin 75)22100200sin 75cos 751002(342sin 150)10025,AB100(米)所以河对岸A、B两点间的距离为100米类型二命题角度1例2D方法一设ABx m,则BCx m.BD(10x)m.tanADB.解得x5(1)m.所以A点离地面的高AB等于5(1)m.方法二ACB45,ACD135,CAD1801353015.由正弦定理,得ACsin ADCsin 30ABACsin 455(1)m.跟踪训练230命题角度2例3100解析依题意,CAB30,AB600 m,CBA18075105,CBD30,ACB1803010545.由正弦定理,得BCsinCABsin 30300,CDBCtanCBD300tan 30100(m)跟踪训练3D当堂训练1D2.43.204.50

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁