《2018版高中数学人教B版必修五学案:第二单元 2.3.2 等比数列的前n项和(二) .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修五学案:第二单元 2.3.2 等比数列的前n项和(二) .docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2.3.2等比数列的前n项和(二)学习目标1.熟练应用等比数列前n项和公式的有关性质解题.2.会用错位相减法求和知识点一等比数列前n项和公式的函数特征思考若数列an的前n项和Sn2n1,那么数列an是不是等比数列?若数列an的前n项和Sn2n11呢?梳理当公比q1时,设A,等比数列的前n项和公式是SnA(qn1)当公比q1时,因为a10,所以Snna1,Sn是n的正比例函数知识点二等比数列前n项和的性质思考若等比数列an的前n项和为Sn,则Sn,S2nSn,S3nS2n成等比数列吗?梳理等比数列an前n项和的三个常用性质(1)数列an为公比不为1的等比数列,Sn为其前n项和,则Sn,S2nSn
2、,S3nS2n仍构成等比数列(2)若an是公比为q的等比数列,则SnmSnqnSm(n,mN)(3)若an是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:在其前2n项中,q;在其前2n1项中,S奇S偶a1a2a3a4a2na2n1(q1)知识点三错位相减法思考在上一节,我们是如何求公比不为1的等比数列an的前n项和Sna1a2an的?梳理如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,一般使用如下方法:Sna1b1a2b2anbn,qSna1b1qa2b2qanbnq a1b2a2b3anbn1,得(1q)Sna1b1(a2a1)b2(a3a2)b3(a
3、nan1)bnanbn1a1b1d(b2b3bn)anbn1a1b1danbn1,Snd.上述方法称为“错位相减法”类型一等比数列前n项和公式的函数特征应用例1已知数列an的前n项和Snan1(a是不为零且不等于1的常数),则数列an()A一定是等差数列B一定是等比数列C是等差数列或等比数列D既非等差数列,也非等比数列反思与感悟(1)已知Sn,通过an求通项an,应特别注意n2时,anSnSn1.(2)若数列an的前n项和SnA(qn1),其中A0,q0且q1,则an是等比数列跟踪训练1若an是等比数列,且前n项和为Sn3n1t,则t_.类型二等比数列前n项和的性质命题角度1连续n项之和问题例
4、2已知等比数列前n项,前2n项,前3n项的和分别为Sn,S2n,S3n,求证:SSSn(S2nS3n)反思与感悟处理等比数列前n项和有关问题的常用方法:(1)运用等比数列的前n项和公式,要注意公比q1和q1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元(2)灵活运用等比数列前n项和的有关性质跟踪训练2在等比数列an中,已知Sn48,S2n60,求S3n.命题角度2不连续n项之和问题例3已知等比数列an的公比q,则等于()A3 BC3 D.反思与感悟注意观察序号之间的联系,发现解题契机;整体思想能使问题解决过程变得简洁明快跟踪训练3设数列an是以2为首项,1为公差的等差数列
5、;数列bn是以1为首项,2为公比的等比数列,则ba1ba2ba3ba6_.类型三错位相减法求和例4求数列的前n项和反思与感悟一般地,如果数列an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法跟踪训练4求和:Snx2x23x3nxn (x0)1一个七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则最底层所点灯的盏数是()A190 B191C192 D1932已知等比数列an的前n项和为Snx3n1,则x的值为()A. BC. D3一个等比数列的前7项和为48,前14项和为60,则前21项和为()A180 B108 C75 D634在数列an中,an1
6、can(c为非零常数),且前n项和为Sn3nk,则实数k_.1在利用等比数列前n项和公式时,一定要对公比q1或q1作出判断2等比数列前n项和中用到的数学思想:(1)分类讨论思想:利用等比数列前n项和公式时要分公比q1和q1两种情况讨论(2)函数思想:等比数列前n项和Sn(qn1)(q1)设A,则SnA(qn1)与指数函数相联系(3)整体思想:应用等比数列前n项和公式时,常把qn,当成整体求解答案精析问题导学知识点一思考当Sn2n1时,an2n1(nN),是等比数列;当Sn2n11时,an不是等比数列知识点二思考设an的公比为q,则Sna1a2an,S2nSnan1an2a2na1qna2qna
7、nqnqnSn,S3nS2na2n1a2n2a3nan1qnan2qna2nqnqn(S2nSn),Sn,S2nSn,S3nS2n成等比数列,公比为qn.知识点三思考在等式两端乘以公比,两式会出现大量的公共项,通过相减消去即可题型探究类型一例1B当n2时,anSnSn1(a1)an1;当n1时,a1a1,满足上式,an(a1)an1,nN.a,数列an是等比数列跟踪训练1类型二命题角度1例2证明方法一设此等比数列的公比为q,首项为a1,当q1时,Snna1,S2n2na1,S3n3na1,SSn2a4n2a5n2a,Sn(S2nS3n)na1(2na13na1)5n2a,SSSn(S2nS3n
8、)当q1时,Sn(1qn),S2n(1q2n),S3n(1q3n),SS2(1qn)2(1q2n)22(1qn)2(22qnq2n)又Sn(S2nS3n)2(1qn)2(22qnq2n),SSSn(S2nS3n)方法二根据等比数列的性质SmnSmqmSn,有S2nSnqnSnSn(1qn),S3nSnqnSnq2nSn,SSSSn(1qn)2S(22qnq2n),Sn(S2nS3n)S(22qnq2n)SSSn(S2nS3n)跟踪训练2解因为S2n2Sn,所以q1,由已知得得1qn,即qn.将代入得64,所以S3n6463.命题角度2例3Aa2a4a6a8a1qa3qa5qa7qq(a1a3a
9、5a7)3.跟踪训练3272类型三例4解设Sn,则有Sn,两式相减,得SnSn,即Sn1.Sn22.跟踪训练4解当x1时,Sn123n;当x1时,Snx2x23x3nxn,xSnx22x33x4(n1)xnnxn1,(1x)Snxx2x3xnnxn1nxn1,Sn.综上可得Sn当堂训练1C2.C3.D4.1问题导学知识点一思考当Sn2n1时,an2n1(nN),是等比数列;当Sn2n11时,an不是等比数列知识点二思考设an的公比为q,则Sna1a2an,S2nSnan1an2a2na1qna2qnanqnqnSn,S3nS2na2n1a2n2a3nan1qnan2qna2nqnqn(S2nS
10、n),Sn,S2nSn,S3nS2n成等比数列,公比为qn.知识点三思考在等式两端乘以公比,两式会出现大量的公共项,通过相减消去即可题型探究类型一例1B当n2时,anSnSn1(a1)an1;当n1时,a1a1,满足上式,an(a1)an1,nN.a,数列an是等比数列跟踪训练1类型二命题角度1例2证明方法一设此等比数列的公比为q,首项为a1,当q1时,Snna1,S2n2na1,S3n3na1,SSn2a4n2a5n2a,Sn(S2nS3n)na1(2na13na1)5n2a,SSSn(S2nS3n)当q1时,Sn(1qn),S2n(1q2n),S3n(1q3n),SS2(1qn)2(1q2
11、n)22(1qn)2(22qnq2n)又Sn(S2nS3n)2(1qn)2(22qnq2n),SSSn(S2nS3n)方法二根据等比数列的性质SmnSmqmSn,有S2nSnqnSnSn(1qn),S3nSnqnSnq2nSn,SSSSn(1qn)2S(22qnq2n),Sn(S2nS3n)S(22qnq2n)SSSn(S2nS3n)跟踪训练2解因为S2n2Sn,所以q1,由已知得得1qn,即qn.将代入得64,所以S3n6463.命题角度2例3Aa2a4a6a8a1qa3qa5qa7qq(a1a3a5a7)3.跟踪训练3272类型三例4解设Sn,则有Sn,两式相减,得SnSn,即Sn1.Sn22.跟踪训练4解当x1时,Sn123n;当x1时,Snx2x23x3nxn,xSnx22x33x4(n1)xnnxn1,(1x)Snxx2x3xnnxn1nxn1,Sn.综上可得Sn当堂训练1C2.C3.D4.1