2022年正切函数的性质与图像教案 .pdf

上传人:Q****o 文档编号:26171928 上传时间:2022-07-16 格式:PDF 页数:3 大小:128.59KB
返回 下载 相关 举报
2022年正切函数的性质与图像教案 .pdf_第1页
第1页 / 共3页
2022年正切函数的性质与图像教案 .pdf_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《2022年正切函数的性质与图像教案 .pdf》由会员分享,可在线阅读,更多相关《2022年正切函数的性质与图像教案 .pdf(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、143 正切函数的性质和图像一、教学目标1. 用单位圆中的正切线作正切函数的图象;2. 用正切函数图象解决函数有关的性质;二、课时 1 课时三、教学重点正切函数的性质与图象的简单应用.四、教学难点正切函数性质的深刻理解及其简单应用. 五、教具多媒体、实物投影仪六、教学过程导入新课思路 1.(直接导入 )常见的三角函数还有正切函数,前面我们研究了正、 余弦函数的图象和性质 ,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课. 思路 2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择

2、,这是传统的导入法. 推进新课新知探究提出问题我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展 ,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?我们用“ 五点法 ” 能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比 “ 五点法 ” 也用几个字总结出作正切简图的方法吗

3、?活动 :问题 ,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性. (1)周期性由诱导公式tan(x+ )=tanx,xR,x 2+k,k Z可知 ,正切函数是周期函数,周期是.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性. (2)奇偶性由诱导公式tan(-x)=-tanx,x R,x 2+k,k

4、Z可知 ,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是 (2k,0)kZ. (3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在 (2,2)内是增函数 ,又由正切函数的周期性可知,正切函数在开区间(2+k,2+k),k Z 内都是增函数. 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 3 页 - - - - - - - - - (4)定义

5、域根据正切函数的定义tan =xy,显然 ,当角 的终边落在y 轴上任意一点时,都有 x=0,这时正切函数是没有意义的;又因为终边落在y 轴上的所有角可表示为k+2,kZ,所以正切函数的定义域是 | k+2,kZ, 而不是 2+2k,k Z,这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质. (5)值域由多媒体课件演示正切线的变化规律,从正切线知 ,当 x 大于2且无限接近2时,正切线 AT 向 Oy 轴的负方向无限延伸;当 x 小于2且无限接近2时,正切线 AT 向 Oy 轴的正方向无限延伸 .因此 ,tanx 在(2,2)内可以取任意实数,但没有

6、最大值、最小值. 因此 ,正切函数的值域是实数集R. 问题 ,教师引导学生作出正切线,并观察它的变化规律,如图 1. 图 1 问题 ,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“ 教师为主导,学生为主体” 的新课改理念.有的学生可能选取了0, 作为正切函数的周期选取,这正是学生作图的真实性的体现.此时 ,教师应调整计划,把课件中先作出-2,2内的图象 ,改为先作出0, 内的图象 ,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区

7、间(-2,2)的图象为好 .这时条件成熟 ,教师引导学生来作正切函数的图象,如图 2. 根据正切函数的周期性,把图 2 向左、右扩展 ,得到正切函数y=tanx,x R,且 x2+k(k Z)的图象 ,我们称正切曲线,如图 3. 图 2 图 3 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 3 页 - - - - - - - - - 问题 ,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x(2,2)的简图 .学生可看出有三个点很

8、关键:(4,-1),(0,0),(4,1),还有两条竖线 .因此 ,画正切函数简图的方法就是:先描三点 (4,-1),(0,0),(4,1),再画两条平行线x=2,x=2,然后连线 .教师要让学生动手画一画,这对今后解题很有帮助. 讨论结果 :略 .正切线是AT.略 .能 , “ 三点两线 ” 法. 提出问题请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质. 设问 :每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子 . 活动 :问题 ,从图中可以看出,正切曲线是被相互平行的直线x=2+k,k Z 所隔开的无穷多支曲线组成的.教师引导学生进一步

9、思考,这点反应了它的哪一性质 定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线渐近线;从y 轴方向看 ,上下无限延伸,得到它的哪一性质 值域为 R;每隔 个单位 ,对应的函数值相等 ,得到它的哪一性质 周期 ; 在每个区间图象都是上升趋势,得到它的哪一性质 单调性 ,单调增区间是(2+k,2+k ),k Z,没有减区间.它的图象是关于原点对称的,得到是哪一性质 奇函数 .通过图象我们还能发现是中心对称,对称中心是 (2k,0),kZ.问题 ,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间 (0, )上就没有单调性

10、. 讨论结果 :略 .略 .应用示例略课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数 ,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质 ,并在此基础上得到图象,最后用图象又验证了函数的性质. 2.( 教师点拨 ) 本节研究的过程是由数及形, 又由形及数相结合, 也是我们研究函数的基本方法, 特别是又运用了类比的方法、数形结合的方法、化归的方法. 请同学们课后思考总结: 这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业 课本习题 1.4 A组 6、8、9.名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 3 页 - - - - - - - - -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁