2017-2018学年高中数学苏教版必修三教学案:第2章 2.2 总体分布的估计 .doc

上传人:荣*** 文档编号:2616481 上传时间:2020-04-24 格式:DOC 页数:19 大小:3.96MB
返回 下载 相关 举报
2017-2018学年高中数学苏教版必修三教学案:第2章 2.2 总体分布的估计 .doc_第1页
第1页 / 共19页
2017-2018学年高中数学苏教版必修三教学案:第2章 2.2 总体分布的估计 .doc_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2017-2018学年高中数学苏教版必修三教学案:第2章 2.2 总体分布的估计 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学苏教版必修三教学案:第2章 2.2 总体分布的估计 .doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、某制造商为2013年全运会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下400340.0039.9840.0039.9940.0039.98400139.9839.9940.0039.9939.9540.01400239.9840.0039.9940.0039.96问题1:上述20个数据中最大值与最小值分别是多少,它们相差多少?提示:最大值为40.03,最小值为39.95,其差为0.08.问题2:将上述数据分组统计,分组情况为39.95,39.97),39.97,39.99),39.99,40.01),40.01,40.03,求各组个

2、数提示:各组数据的个数为2,4,10,4.问题3:试求出各组数据所占的比例?提示:分别为0.10,0.20,0.50,0.20.问题4:能否用一个直观图来表示问题2中各组数据的分布情况?提示:可以1频率分布表(1)定义:当总体很大或不便于获得时,可以用样本的频率分布估计总体的频率分布我们把反映总体频率分布的表格称为频率分布表(2)绘制的步骤:求全距,决定组数和组距,组距.分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间登记频数,计算频率,列出频率分布表2频率分布直方图(1)定义:我们用直方图反映样本的频率分布规律,这样的直方图称为频率分布直方图(2)绘制步骤:先制作频率分布表建立直

3、角坐标系:把横轴分成若干段,每一段对应一个组的组距,并标上一些关键点画矩形:在横轴上,以连结相邻两点的线段为底,以纵轴上为高作矩形,这样得一系列矩形,就构成了频率分布直方图3频率分布折线图(1)定义:把频率分布直方图中各相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图(2)总体分布密度曲线:频率折线图的优点是它反映了数据的变化趋势,如果将样本容量取得足够大,分组的组距取得足够小,则相应的频率折线图将趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线1在频率分布表中,除最后一个区间是闭区间,其他区间均为左闭右开区间,这样做的目的是为了不重不漏,避免丢失样本数据2在频率分布直方图中,各

4、个小矩形的面积之和为1.3频率分布直方图直观地显示了数据分布信息,从而为分析估计总体提供了依据4频率分布折线图反映了数据的变化趋势,可用来对数据进行估计和预测 例1从某校参加 2016年全国高中数学联赛预赛的600名同学中,等可能抽取若干名同学,将他们的成绩制成频率分布表,下面给出了此表中部分数据(1)根据表中已知数据,依次写出在、处的数值;(2)补全在区间70,140上的频率分布直方图;(3)若成绩不低于110分的同学能参加决赛,那么可以估计该校大约有多少学生能参加决赛?分组频数频率70,80)0.0880,90)90,100)0.36100,110)160.32110,120)0.0812

5、0,130)2130,1400.02合计思路点拨根据频率分布表作出频率分布直方图精解详析(1)500.040.10.(2)如图:(3)成绩不低于110分的同学能参加决赛的频率为0080.040.020.14,所以估计该校能参加决赛的人数大约为6000.1484.一点通1.在列频率分布表时,全距、组距、组数有如下关系:(1)若为整数,则组数(2)若不为整数,则的整数部分1组数2组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少,都会影响我们了解数据的分布情况,若样本容量不超过100,按照数据的多少常分为512组,一般样本容量越大,所分组

6、数越多1. 从全校参加科技知识竞赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高的比是13642,最右边一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)列出频率分布表解:(1)由于各组的组距相等,所以各组的频率与各小长方形的高成正比且各组频率的和等于1,那么各组的频率分别为,.设该样本容量为n,则,所以样本容量为n48.(2)由以上得频率分布表如下:成绩频数频率50.5,60.5)360.5,70.5)970.5,80.5)1880.5,90.5)1290.5,100.5)6

7、合计4812有一容量为200的样本,数据的分组以及各组的频数如下:20,15),7;15,10),11;10,5),15;5,0),40;0,5),49;5,10),41;10,15),20;15,20),17.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)求样本数据不足0的频率解:(1)频率分布表如下:分组频数频率20,15)70.03515,10)110.05510,5)150.0755,0)400.2000,5)490.2455,10)410.20510,15)200.10015,20)170.085合计2001.00(2)频率分布直方图如图所示:(3)样本数据不足0的频率

8、为0.365. 例2(12分)为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,绘制出频率分布直方图(如图所示),第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该校全体高一学生的达标率是多少?思路点拨(1)利用频率等于对应小长方形面积来确定;(2)满足条件的频率之和即为达标率精解详析(1)由题中可知第二小组100,110)对应的为0.008,而组距为10,故频率为0.008100.08,(4分)设样本容量为为n,则0.08,n150.(8分)(2)根据频率分布直方图,次数在110以上共有四

9、组估计该校全体高一学生的达标率为:10.040.080.88.(12分)一点通1.频率分布直方图的性质:(1)因为小矩形的面积组距频率/组距频率,所以各小矩形的面积表示相应各组的频率这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小(2)在频率分布直方图中,各小矩形的面积之和等于1.(3)频数/相应的频率样本容量2频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内的可能性3观察新生婴儿的体重(单位:g),其频率分布直方图如下图所示,则新生婴儿体重在2 700,3 000)内的频率为_解析:由图可知当新生婴儿

10、体重在2 700,3 000)内时,0.001,而组距为300,所以频率为0.0013000.3.答案:0.34为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为123,第2小组的频数为12,则报考飞行员的学生人数是_解析:依题意,设第2小组的频率为2x,则有6x1(0.0370.013)5,得2x0.25,即第2小组的频率为0.25,因此报考飞行员的学生人数是48.答案:485为了解电视对生活的影响,一个社会调查机构就平均每天看电视的时间对某地居民调查了10 000人,并根据所得数据画出样本的频率分布直方

11、图(如图),为了分析该地居民平均每天看电视的时间与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人做进一步调查,则在2.5,3(小时)时间段内应抽出的人数是_解析:抽出的100人中平均每天看电视的时间在2.5,3(小时)时间内的频率是0.50.50.25,所以这10 000人中平均每天看电视的时间在2.5,3(小时)时间内的人数是10 0000.252 500,抽样比是,则在2.5,3(小时)时间段内应抽出的人数是2 50025.答案:251频率分布表和频率分布直方图都是用来描述样本数据情况的,是相同数据的两种不同的表达方式2频率分布表在数量表示上比较确切,但不

12、够直观、形象,用它来分析数据分布的总体趋势不太方便,而频率分布直方图能够表示大量数据,非常直观、形象地表明分布的规律,使我们能够看到在分布表中看不清楚的数据模式但是直方图会丢失一些信息,如原始数据不能在图中表示出来 课下能力提升(十一)一、填空题1如图是容量为100的样本的频率分布直方图,试根据图形中的数据填空(1)样本数据在范围6,10)内的频率为_;(2)样本数据落在范围10,14)内的频数为_解析:(1)样本数据在6,10)内频率为0.0840.32.(2)在10,14)内的频数为0.09410036.答案:(1)0.32(2)362为了调查某厂工人生产某种产品的能力,随机抽查了20名工

13、人某天生产该产品的数量,产品数量的分组区间为45,55),55,65),65,75),75,85),85,95,由此得到频率分布直方图如下图,则这20名工人中一天生产该产品数量在55,75)的人数是_解析:由题意得,这20名工人中一天生产该产品数量在55,75)的人数是20(0.0400.025)1013(人)答案:133将容量为100的样本数据,按从小到大的顺序分成8个组,如下表:组号12345678频数914141312x1310则第六组的频率为_解析:914141312x1310100,x15.P0.15.答案:0.154为提高公众对健康的自我管理能力和科学认识,某调查机构共调查了200

14、人在一天中的睡眠时间现将数据整理分组,如下表所示由于操作不慎,表中A,B,C,D四处数据污损,统计员只记得A处的数据比C处的数据大4,由此可知B处的数据为_.分组(睡眠时间)频数频率4,5)80.045,6)520.266,7)AB7,8)CD8,9)200.109,1040.02合计2001解析:设A处的数据为x,则C处的数据为x4,则xx4852204200,x60,则B处数据为0.3.答案:0.35对某市“四城同创”活动中800名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为25,30)的数据不慎丢失,则依据此图可得:(1)25,30)年龄组对应小矩形的高度为_;(2

15、)据此估计该市“四城同创”活动中志愿者年龄在25,35)的人数为_解析:设25,30)年龄组对应小矩形的高度为h,则5(0.01h0.070.060.02)1,h0.04.志愿者年龄在25,35)的频率为5(0.040.07)0.55,故志愿者年龄在25,35)的人数约为0.55800440.答案:0.04440二、解答题6.某工厂对一批产品进行了抽样检测,右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是96,106,样本数据分组为96,98),98,100),100,102),102,104),104,106)已知样本中产品净重小于100克的个数是36

16、,则样本中净重大于或等于98克并且小于104克的产品的个数是多少?解:产品净重小于100克的频率为(0.0500.100)20.300,已知样本中产品净重小于100克的个数是36,设样本容量为n,则0.300,所以n120,净重大于或等于98克并且小于104克的产品的频率为(0.1000.1500.125)20.750,所以样本中净重大于或等于98克并且小于104克的产品的个数是1200.75090.7根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:API05051100101150151200201250251300300级别1212状况优良轻微污染轻度污染污染中度中度重污染

17、重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间0,50,(50,100,(100,150,(150,200,(200,250,(250,300进行分组,得到频率分布直方图如图(1)求频率分布直方图中x的值;(2)计算一年中空气质量为良和轻微污染的总天数(提示:结果用分数表示已知5778 125,27128,365735)解:(1)由图可知50x1()50150,解得x;(2)365(5050)219.答:一年中空气质量为良和轻微污染的总天数为219天8为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),

18、并将所得数据分组,画出频率分布直方图(如图所示)(1)求出各组相应的频率;(2)估计数据落在1.15,1.30中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中还有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数解:(1)由频率分布直方图和频率组距()可得下表分组频率1.00,1.05)0.051.05,1.10)0.201.10,1.15)0.281.15,1.20)0.301.20,1.25)0.151.25,1.300.02(2)0.300.150.020.47,所以数据落在1.15,1.30中的概率约为0.47

19、.(3)由分层抽样中每个个体被抽到的概率相同知:设水库中鱼的总条数为N,则,即N2 000,故水库中鱼的总条数约为2 000条第2课时茎叶图2016年CBA新赛季,山东队某队员在该赛季各场比赛的得分情况如下:15,21,20,19,23,26,25,20问题1:利用这些数据能否直接判断出该运动员发挥水平?提示:可以,但会存在偏差问题2:能否利用频率分布直方图来分析这些数据?提示:由于样本数据较少,一般不用直方图问题3:由于数据较少,可否有更快捷的作图方式来分析数据?提示:有1茎叶图的制作方法(1)画“茎”:“茎”表示两位数的十位数字,茎相同者共用一个茎,茎按从小到大的顺序从上向下列出,再画上竖

20、线作为分界线(2)添“叶”:“叶”画在分界线的另一侧表示两位数的个位数字,共茎的叶一般按从小到大(或从大到小)的顺序同行列出2茎叶图刻画数据的优缺点(1)茎叶图刻画数据的优点:所有的信息都可以从茎叶图中得到茎叶图便于记录和表示(2)茎叶图刻画数据的缺点:当样本数据很多时,茎叶图的效果就不是很好了1茎叶图画茎时可以画成纵向的,也可画成横向的2茎叶图表示数据时也可以表示三位数据,此时茎表示前两位,叶表示最后一位3茎叶图主要是针对样本数据不多或数据位数较少时,便于快速记录分析;样本数据较多或数据位数较多时,不方便使用 例1某中学甲、乙两名同学最近几次的数学考试成绩情况如下:甲的得分:95,81,75

21、,89,71,65,76,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,并根据茎叶图对两人的成绩进行比较思路点拨确定茎与叶,作出茎叶图,并判断比较精解详析甲、乙两人数学成绩的茎叶图,如图所示从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,大多集中在80100之间,中位数是98分;甲同学的得分情况除一个特殊得分外,也大致对称,多集中在7090之间,中位数是88分,但分数分布相对于乙来说,趋向于低分阶段因此,乙同学发挥比较稳定,总体得分情况比甲同学好一点通绘制茎叶图关键是分清茎和叶,一般地说数据是两位数

22、的,十位上数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”,解题时要合理的选择茎和叶1某次运动会甲、乙两名射击运动员射击成绩如下:(单位:环)甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1用茎叶图表示甲、乙二人成绩解:中间数字表示成绩的整环数,旁边数字表示小数点后的数字2.某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,1

23、1,24,27,17.某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示(2)进行分析,得出什么结论?解:(1)如图: (2)电脑杂志上每个句子的字数集中在1030之间,而报纸上每个句子的字数集中在2040之间,可看出电脑杂志上每个句子的平均字数比报纸上的少,说明它作为科普读物需要通俗易懂、简明. 例2(12分)为缓解车堵现象,解决车堵问题,北京市交通局调查了甲、乙两个交通站的车流量,在2016年5月随机选取了14天,统计每天上午7:309:0

24、0间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由思路点拨根据茎叶图中的数据分析并作出判断精解详析(1)甲交通站的车流量的中位数为56.5.(4分)乙交通站的车流量的中位数为36.5.(8分)(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙(12分)一点通对于茎叶图要首先分清楚茎叶所表示的意义及叶的排放规律,它也直观地表示了数据的集中、离散的程度以及中位数、众数等特征3本例中条件不变,试计算甲、乙两交通站的车流

25、量在10,40之间的频率解:甲站的车流量在10,40之间的有4天,故频率为.乙站的车流量在10,40之间的有6天,故频率为.4从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285287292294295301303303307308310314319323325325328331334337352乙品种:284292295304306307312313315315316318318320322322324327329331333336337343356由以上数据设计了茎叶图如图所示根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较

26、,写出两个统计结论:_;_.解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大部分集中在312337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于310等,通过分析可以得到答案答案:甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)茎叶图能够展示数据的分布情况,它的茎是指中间的一列数,叶是从茎的旁边生长出来的数用茎叶图表示数据有两个最大优点:一是原始数据没有丢失,二是便于记录和表示 课下能力提升(十二)一、填空题1在茎叶图中比40大的数据有_个解析:由茎叶图中知比40大的有47、48、4

27、9,共3个答案:32在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有_个解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个答案:63数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取_解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了答案:12、13、14、154在如图所示的茎叶图中落在20,40上的频数为_解析:由茎叶图中给出了12个数据,其中在20,40上有8个答案:85某中学高一(1)甲、乙两同学在高一学年度的考试成绩如下:从茎叶图中可得出_同学成绩

28、比较好解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些答案:甲二、解答题6某中学高二(1)班甲、乙两名同学自上高中以来每次数学考试成绩情况如下(单位:分):甲的得分:81,75,91,86,89,71,65,88,94,110,107;乙的得分:83,86,93,99,88,103,98,114,98,79,101;画出甲乙两人数学成绩的茎叶图,请根据茎叶图对两个人的成绩情况进行比较解:甲、乙两人数学成绩的茎叶图如图所示:从这个茎叶图可以看出,乙同学的得分集中在98分附近,数据分布是大致对称的;甲同学的得分集中在86分附近,分数数据分布也是大致对称的,但较分散所以乙同学发挥比较稳

29、定,得分情况好于甲750辆汽车经过某一段公路的时速记录如图所示:将其分成7组并要求:(1)列出样本的频率分布表;(2)画出频率分布直方图以及频率分布折线图;(3)根据上述结果,估计汽车时速在哪组的几率最大?解:(1)由茎叶图知,数据最大值为33,最小值为13,分为7组,组距为3,则频率分布表为:分组频数频率12.5,15.5)30.0615.5,18.5)80.1618.5,21.5)90.1821.5,24.5)110.2224.5,27.5)100.2027.5,30.5)50.1030.5,33.540.08合计501(2)频率分布直方图及频率分布折线图如图所示:(3)汽车时速在21.5

30、,24.5)内的几率最大,为0.22.8茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分试回答下列问题:(1)在伪代码中,“k0”的含义是什么?横线处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况S0,T0ForI From1To32Readk,xIfk0ThenSSxIfk1ThenTTxEnd ForA_SS/15,TT/17PrintS,T,A解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“SS/15,TT/17”可推知,“k1”和“k0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线处应填“(ST)/32”(2)女生、男生以及全班成绩的平均分分别为S78,T77,A77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多相比较男生两极分化比较严重.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁