2018版高中数学人教B版必修四学案:第二单元 2.4.1 向量在几何中的应用 .docx

上传人:荣*** 文档编号:2616058 上传时间:2020-04-24 格式:DOCX 页数:7 大小:720.92KB
返回 下载 相关 举报
2018版高中数学人教B版必修四学案:第二单元 2.4.1 向量在几何中的应用 .docx_第1页
第1页 / 共7页
2018版高中数学人教B版必修四学案:第二单元 2.4.1 向量在几何中的应用 .docx_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《2018版高中数学人教B版必修四学案:第二单元 2.4.1 向量在几何中的应用 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修四学案:第二单元 2.4.1 向量在几何中的应用 .docx(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.4.1向量在几何中的应用学习目标1.经历用向量方法解决某些简单的几何问题及其它一些实际问题的过程.2.体会向量是一种处理几何问题的有力工具.3.培养运算能力、分析和解决实际问题的能力.知识点一向量在平面几何中的应用设a(x1,y1),b(x2,y2),a,b的夹角为.思考1证明线段平行、点共线及相似问题,可用向量的哪些知识?思考2证明垂直问题,可用向量的哪些知识?思考3用向量方法解决平面几何问题的“三步曲”是怎样的?梳理(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:ab(b0)_.(2)证明垂直问题,如证明四边形是矩形、正方形等,常用向量垂直的等价条件:非零向量a,

2、b,ab_.(3)求夹角问题,往往利用向量的夹角公式:cos _.(4)求线段的长度或证明线段相等,可以利用向量的线性运算、向量模的公式:|a|_.知识点二直线的方向向量和法向量思考若向量a(a1,a2)平行于直线l,则a1,a2与直线l的斜率k有何关系?梳理如果知道直线的斜率k,则向量(a1,a2)一定与该直线_.这时向量(a1,a2)称为这条直线的_向量.如果表示向量的基线与一条直线垂直,则称这个向量垂直该直线.这个向量称为这条直线的_向量.即直线ykxb的方向向量为_,法向量为_;直线AxByC0的方向向量为_,法向量为_.类型一用平面向量解决平面几何问题例1已知在正方形ABCD中,E、

3、F分别是CD、AD的中点,BE、CF交于点P.求证:(1)BECF;(2)APAB.反思与感悟用向量证明平面几何问题的两种基本思路(1)向量的线性运算法的四个步骤选取基底;用基底表示相关向量;利用向量的线性运算或数量积找出相应关系;把几何问题向量化.(2)向量的坐标运算法的四个步骤建立适当的平面直角坐标系;把相关向量坐标化;用向量的坐标运算找出相应关系;把几何问题向量化.跟踪训练1如图,在正方形ABCD中,P为对角线AC上任一点,PEAB,PFBC,垂足分别为E,F,连接DP,EF,求证:DPEF.类型二向量在解析几何中的应用例2已知ABC的三个顶点A(0,4),B(4,0),C(6,2),点

4、D,E,F分别为边BC,CA,AB的中点.(1)求直线DE,EF,FD的方程;(2)求AB边上的高线CH所在的直线方程.反思与感悟利用向量法解决解析几何问题,首先将线段看成向量,再把坐标利用向量法则进行运算.跟踪训练2在ABC中,A(4,1),B(7,5),C(4,7),求A的平分线所在的直线方程.1.已知在ABC中,若a,b,且ab0,则ABC的形状为()A.钝角三角形 B.直角三角形C.锐角三角形 D.不能确定2.过点A(2,3),且垂直于向量a(2,1)的直线方程为()A.2xy70 B.2xy70C.x2y40 D.x2y403.在四边形ABCD中,若0,0,则四边形ABCD为()A.

5、平行四边形 B.矩形C.等腰梯形 D.菱形4.如图,在平行四边形ABCD中,已知AB8,AD5,3,2,则的值是_.5.如图所示,在ABC中,点O是BC的中点.过点O的直线分别交直线AB,AC于不同的两点M,N,若m,n,则mn的值为_.利用向量方法可以解决平面几何中的平行、垂直、夹角、距离等问题.利用向量解决平面几何问题时,有两种思路:一种思路是选择一组基底,利用基向量表示涉及的向量;另一种思路是建立坐标系,求出题目中涉及的向量的坐标.答案精析问题导学知识点一思考1可用向量共线的相关知识:ababx1y2x2y10(b0)思考2可用向量垂直的相关知识:abab0x1x2y1y20.思考3(1

6、)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2)通过向量运算,研究几何元素之间的关系,距离,夹角等问题;(3)把运算结果“翻译”成几何关系梳理(1)abx1y2x2y10(2)ab0x1x2y1y20(3)(4)知识点二思考设A(x1,y1)l,P(x,y)l,直线l的倾斜角为,斜率为k.向量a平行于l,由直线斜率和正切函数的定义,可得ktan .梳理平行方向法(1,k)(k,1)(B,A)(A,B)题型探究例1证明建立如图所示的平面直角坐标系,设AB2,则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1)(1)(1,2),(2

7、,1)(1)(2)2(1)0,即BECF.(2)设点P的坐标为(x,y),则(x,y1),(2,1),x2(y1),即x2y2.同理,由,得y2x4.由得点P的坐标为(,)| 2|,即APAB.跟踪训练1证明设正方形ABCD的边长为1,AEa(0a1),则EPAEa,PFEB1a,APa,()()1acos 1801(1a)cos 90aacos 45a(1a)cos 45aa2a(1a)0.,即DPEF.例2解(1)由已知得点D(1,1),E(3,1),F(2,2),设M(x,y)是直线DE上任意一点,则.又(x1,y1),(2,2),(2)(x1)(2)(y1)0,即xy20为直线DE的方程同理可求,直线EF,FD的方程分别为x5y80,xy0.(2)设点N(x,y)是CH所在直线上任意一点,则,0.又(x6,y2),(4,4),4(x6)4(y2)0,即xy40为所求直线CH的方程跟踪训练2解(3,4),(8,6),A的平分线的一个方向向量为a.设P(x,y)是角平分线上的任意一点,A的平分线过点A,a,所求直线方程为(x4)(y1)0.整理得7xy290.当堂训练1A2.A3.D4.225.2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁