-/
第7章 电化学
1. 正负、阴阳极规定及离子迁移方向
正负极:电势高的为正极,电势低的为负极
阴阳极:发生氧化反应的为阳极,发生还原反应的为阴极
离子迁移方向:阴离子迁向阳极,阳离子迁向阴极
原电池:正极-阴极 负极-阳极
电解池:正极-阳极 负极-阴极
2.
F -- 法拉第常数; F = Le = 96485.309 C/mol,计算取 96500 C/mol
3. 单位:Ω-1或 S
单位: S∙m-1
4. 科尔劳施(Kohlrausch)根据实验结果得出结论:在很稀的溶液中,强电解质的摩尔电导率与其浓度的平方根成直线关系,即
5. 离子独立运动定律
在无限稀释溶液中,每种离子独立移动,不受其它离子影响,电解质的无限稀释摩尔电导率可认为是两种离子无限稀释摩尔电导率之和。
⑴ (无限稀释)电解质溶液的 ∧m∞ 是阳、阴离子对 ∧m∞ 的贡献之和,即为离子极限摩尔电导率的加和值。若电解质为 Cv+Av- ,在无限稀释溶液中全部电离:
v+,v-分别表示阳、阴离子的化学计量数。
(2)稀释溶液中,具有相同离子的不同电解质,该相同离子的 ∧m∞ 都相同。
(3)在无限对于强电解质,比如 NaCl
由∧m ~ c 的直线外推
② 若已知∧m∞(Na+)、∧m∞ (Cl-),则∧m∞(NaCl)=∧m∞ (Na+)+ ∧m∞ (Cl-)
对于弱电解质,
6. 电导测定的应用
(1)计算弱电解质的解离度及解离常数
(2) 计算难溶盐的溶解度
a. 难溶盐饱和溶液的浓度极稀,可认为
b.计算难溶盐电导率时水的电导率不能忽略,即
运用摩尔电导率的公式就可以求得难溶盐饱和溶液的浓度c。
7.
8.
平均离子活度系数公式:
9.
在298.15 K水溶液中: A= 0.509 (mol-1.kg)1/2
10. 电极反应与电池反应
要求同学们能根据电池的构成,熟练的写出两电极反应与电池反应;另一方面能将简单的化学反应设计成电池。
在原电池图式表示式中要注意几点:
⑴负极写在左边,正极写在右边;
⑵实垂线“|”表示不同相的界面,虚垂线“┊”表示两半电池中的溶液有接界,双虚垂线 “ ” 表示盐桥;
⑶要标示各相的相态( l, s, g )。气体电极要标明其压力,溶液中的组分要标明其浓度或活度;
⑷气体不能直接作为电极,必须依附于惰性电极(如 Pt) H2、O2、Cl2电极, 也包括Br2(l), I2(s)电极。
11. 可逆电池
1) 电极反应是可逆的
2) I趋于0,电势差无限小
3) 无其它不可逆过程 (如液接不可逆扩散等)
12.原电池热力学
②
①测定一系列不同温度下的电动势,作 E~T 曲线,曲线上各点的斜率即为各温度下的 (∂E/∂T)p
化学反应的ΔrGm等热力学性质随计量方程式的写法不同,但电池的电动势与化学方程式的写法无关。
13. 电池的能斯特方程
此式称为能斯特方程,是原电池的基本方程。它表明了一定温度下且各物质为任意指定状态下,可逆电池的电动势与参与反应的各组分活度之间的关系式。
有了能斯特方程,若已知各组分的活度,便可求得电池在任意状态下的电动势,使用该式时要注意以下几点:
⑴ 要写出电池反应,以确定进行 1 mol 化学反应在两电极上得失电子的摩尔数 z;确定反应物(vB < 0 ,在分母上)与产物(vB > 0, 在分子上)
⑵ 溶液中的组分用活度a(a+, a-, a, a ,情况不同,使用不同活度),气体用分压 p/pθ,纯液、固体不出现
⑶ 25℃下,能斯特方程可写为在方程式中(或 a=1)
14. 电极电势的计算
电极的标准电极电势我们可查表,但如果构成电极的各种物质不处于标准态,即电极处于任意状态,其电极电势又如何计算呢?
⑴ 不论电极在实际电池中充当正极还是负极,须按电极上的还原反应使用上式计算单个电极的电极电势。
⑵ 同样,溶液中组分用活度,气体物质用压力,纯固液物质不出现。
⑶ 要注意写出参与电极反应但本身未发生氧化、还原的物质的活度,
⑷ 25℃时亦可写为
15. 电极的种类
(1). 第一类电极
特点:电极与它的离子溶液相接触,参与反应的物质存在于两个相中,电极有一个相界面。
金属电极和卤素电极:均较简单,如
Zn2+|Zn: Zn2++2e-→Zn
Cl- | Cl2|Pt: Cl2(g)+2e-→2Cl-
氢电极
酸性: H+|H2(g)|Pt
电极反应:2H++2e-→H2(g)
标准电极电势:
优点:电动势随温度改变很小。
碱性: OH-,H2O|H2(g)|Pt
电极反应:2H2O+2e-→H2(g)+2OH-
氧电极
酸性: H+, H2O|O2(g)|Pt
电极反应:O2(g)+4H++4e-→2H2O(g)
碱性: OH-,H2O|O2(g)|Pt
电极反应:O2(g)+2H2O+4e-→4OH-
(2)第二类电极
金属-难溶盐电极: 在金属上覆盖一层该金属的难溶盐,然后将它浸入含有与该难溶盐具有相同负离子的易溶盐溶液中而构成的。
1) Ag-AgCl 电极 : Cl- | AgCl(s) | Ag AgCl(s)+e → Ag+Cl-
2)甘汞电极
电极表示:Cl-|Hg2Cl2(s)|Hg
甘汞电极制作容易,电极电位稳定,常以甘汞电极作为参比电极。按甘汞电极中KCl溶液浓度的不同,分为三种甘汞电极:饱和KCl溶液, 1 moldm-3 KCl 溶液, 0.1 moldm-3 溶液。三种甘汞电极的电极电位都以氢电极为标准测得,它们便可以充当二级标准。
金属-难溶氧化物电极 以锑-氧化锑电极为例:在锑棒上覆盖一层三氧化二锑,将其浸入含有H+或OH-的溶液中就构成了锑-氧化锑电极。
(3)—氧化还原电极
电极极板(Pt)只起输送电子的任务,参加反应的物质都在溶液中。
16. 设计原电池的方法:
将给定反应分解成两个电极反应,一个发生氧化反应作为阳极,一个发生还原反应作为阴极,两个电极反应的总和等于该反应。
一般可先写出一个电极反应,然后从总反应中减去这个电极反应,即可得到另一个电极反应。注意写出的电极反应应符合三类电极的特征。
然后按顺序从左到右列出阳极板至阴极板各个相,相与相之间用垂线隔开,若为双液电池,在两溶液中用双垂线表示用盐桥。
17. 用过电位 η 的数值来表示电极极化程度的大小。
E(阳) > E(阳,平) 即阳极电位升高;E(阴) < E(阴,平) 即阴极电位降低。
电极产生极化的原因可简单分为两类:浓差极化与电化学极化。
第11章 化学动力学
一、用生成物的生成速率或反应物的消耗速率代表反应速率
⑴ 为保持反应速率为正值,在用反应物的消耗速率代表整个反应的速率时,前面要加负号;
⑵ 不同反应物的消耗速率及不同生成物的生成速率数值大小是不同的,选用那种物质代表整个反应速率时,需注以下脚标;
⑶ 不同物质的消耗速率或生成速率总是与各自的计量系
2. 反应速率的实验测定数
⑴ 化学法:用化学分析方法测不同时刻各物质浓度 绘 c-t 曲线 各时刻的反应速率
⑵ 物理方法:利用物理手段,测定不同时刻与物质浓度呈线性关系的物理量,从而确定反应速率。
比如恒温恒容气相反应
可用υA 代表A 的消耗速率,即可用υA代表整个反应的速率
三.化学反应(经验)的速率方程
化学反应的速率方程:表示在一定温度下化学反应速率与物质浓度间关系的方程。
1. 反应级数
⑴ 分级数与总级数
速率方程中各浓度的方次nA,nB, … 称为A、B、 …组分的分级数,而各组分的分级数之和称为反应的总级数(或简称为反应级数)。 n = nA + nB + …
⑵ 反应级数nA, nB, … 都是由实验确定的常数,不能通过化学计量方程式写出;
⑶ 反应级数可以是整数、分数或0,而且可正可负;
⑷ 也有无级数可言的反应
2. 反应速率常数
⑴ 不同反应 k 值不同,k 值越大,反应速率越快
⑵ 同一反应,k 值与浓度无关,决定 k 值大小的因素是温度及催化剂;
⑶ k的单位随反应级数不同而异;
可以从所提供的速率常数 k 的单位来判断反应的级数。
⑷ 同一反应,用不同组分的浓度变化表示反应速率方程时,各速率常数是不同的,且与各自的计量系数成正比。
3.恒容气相反应的速率方程 (且反应前后气体分子数发生变化的反应)
在对气相反应体系进行动力学测定时,单一物质的分压 pA 往往是不能测定的,总是通过测定体系在不同时刻的总压 p总→ pA
4、 速率方程的积分形式
1.零级反应
② 零级反应的基本特征
⑴ 以 CA-t 作图,为一条直线,直线的斜率m = k
⑵ 零级反应速率常数 k 的单位为浓度 (时间)-1 。
⑶ 零级反应的半衰期正比于反应的初始浓度,且
2. 一级反应
一级反应的几个特征:
⑴ 一级反应,以 ln cA-t 作图,为一条直线,直线的斜率m = -k
⑵ 一级反应速率常数 k 的单位为(时间)-1,一般情况 s-1
⑶ 一级反应的半衰期与反应的初浓度无关,且
恒容(恒温)一级气相反应速率方程的积分形式
3.二级反应
(1) . 二级反应的速率方程的积分形式
二级反应可分为以下两种情况:
A. 只有一种反应物 aA → 产物
速率方程的微分形式
二级反应的特征
⑴ 以1/cA-t作图,为一条直线,直线斜率即为速率常数
⑵ 二级反应速率常数 k 的单位为 (浓度)-1(时间)-1,一般情况 molL-1s-1
⑶ 二级反应的半衰期与反应物的初浓度成反比
恒容(恒温)二级气相反应速率方程的积分形式
k 的单位 (压力)-1 (时间)-1 一般 kpa-1 s-1
B. 有两种反应物 aA + bB → 产物
速率方程的微分形式
在一定条件下,第二种情况可化为第一种形式。
⑴ 当一种物质大大过量,在反应过程中可视其浓度保持不变,则反应为准一级反应
⑵ 当a=b(计量系数相同 ), 且两种反应物初浓度相等,即cA,0 = cB,0 则任一瞬时CA=CB,速率方程转化为第一种类型的二级反应
五、阿仑尼乌斯方程
此式表明,由lnk 对1/T作图得一直线,由直线斜率和截距可求得Ea 及指前因子A
此式的应用主要包括以下几个方面:
1)已知两温度下的k 值,求E;
2)已知一个温度下的k 和反应的E ,求另一温度下的k ;
3)已知一个温度下的k 和反应的E ,求与另一k值相应的反应温度T
六、 复合反应
1.对行反应
⑴ 以 ln(cA-cA,e)~t 作图为一条直线 直线斜率为m= -(k1 + k-1)
⑵ 对行反应经过足够的时间,反应物与产物都分别趋于它 们的平衡浓度cA,e, cB,e
⑶ 对行一级反应完成了初始距平衡浓度差一半所需的时间为:t=ln2/(k1+k-1)
2. 平行反应
级数相同的平行反应,任一瞬间产物中各种生产物浓度之比等于对应的速率常数之比,与反应物的初浓度及反应时间无关。
3. 连串反应的特征
在连串反应反应中,中间产物的浓度会出现最大值 cB,m,浓度 cB 取最大值对应的时间称为中间产物的最佳时间 tm。
七、反应机理
基元反应的反应分子数:直接参加基元反应的质点数。(质点可以是分子、原子、离子、自由基等)
质量作用定律:基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度的方次即为反应式中相应组分的分子数。
⑴ 只有基元反应才遵循质量作用定律,非基元反应不能使用质量作用定律,即不能根据计量方程式写速率方程;
⑵ 反应分子数与反应级数的区别
反应分子数是个微观概念,只能用于基元反应;是个理论数值,只能是1、2、3。
反应级数是个宏观概念,一般针对总包反应。它是物质浓度对反应速率影响的总结果。化学反应的级数须由实验测定,反应级数的数值可以是整数、分数、0,且可正、可负,也有无级数可言的反应。
8. 由反应机理推导(机理)速率方程
1.选取控制步骤法
在连串反应中,当其中某一步反应的速率很慢,就将它的速率近似作为整个反应的速率,这个慢步骤称为反应的速率控制步骤。
2. 平衡态近似法
在一个包括有对行反应的连串反应中,如果存在速控步时,则可以认为其它各反应步骤的正向和逆向间的平衡关系可以继续保持而不受速控步影响。在化学动力学中,这种处理方法称为平衡近似。
解题步骤:
反应机理中至少存在一个能快速达到平衡的对峙反应;
由“慢反应”建立复合反应的速率方程表达式;
由“对行反应”解出活泼中间物(如C)的 浓度表达式;
求出复合反应速率系数和活化能。
3. 稳态近似法
稳态或定态指某活泼中间物如自由原子、自由基的生成速率与消耗速率相等以致其浓度不随时间变化的状态。
解题思路:
1).确定用某一反应物或产物的反应速率表示总反应速率,(选择计量反应的反应物或者生成物(该组分在反应机理中涉及最少的基元反应)之一作为推导的起点。
2).根据反应机理和质量作用定律写出该组分的所有反应速率方程表达式,式中含有活泼中间产物的浓度项
3).根据反应机理和质量作用定律写出各活泼中间产物的 反应速率方程表达式,由稳态法令其等于0;
注意:每一组分的总的反应速率均为与其有关的各基元反应速率的代数和
4).解出活泼中间产物的浓度与总反应式中反应物或产物的 浓度的关系;
5).代入总反应速率表达式中,消去活泼中间产物浓度项得到总反应速率方程式并可求出复合反应速率系数和活 化能。
6).对表达式中每个中间体应用稳态近似法,从而得到关于中间体浓度的代数方程。如果出现新的中间体,继续使用稳态近似法,直至解出所有在速率表达式中涉及的中间体为止。
第十章 界面现象
一、固-液界面
在气、液、固三相接触点,固-液界面的水平线与气-液界面切线之间通过液体内部的夹角θ,称为接触角.
杨氏方程
按照润湿程度的深浅,可将润湿分为三个级别:沾湿、浸湿、铺展、
接触角θ可由实验测定。习惯上人们用接触角的大小来衡量液体对固体是否润湿及润湿性能的好坏。
⑴ 若θ <90称液体能湿润固体,cosθ>0,此时必有γs>γls,且称此时的固体为亲液固体。
⑵ 若θ>90 称液体不能润湿固体,cosθ<0,此时必有γs<γls称此时的固体为憎液固体。例如水-石蜡,水
⑶ 若θ→0,称液体对固体完全润湿,液体几乎在固体表面完全铺展开,cosθ→1。银-玻璃。
接触角愈小,液体对固体的润湿性能愈好。
⑷ 液体在亲液固体的毛细管中,液面必是凹形;液体在憎液固体的毛细管中,液面必是凸形。
2、 弯曲液面的附件压力
——Laplace方程
① 该形式的 Laplace 公式适用于球形液面。
② 曲面内(凹)的压力大于曲面外(凸)的压力,Δp>0。
③ r 越小,Δp 越大;r 越大,Δp 越小。
平液面 r →∞,Δp→0,(并不是g = 0)
④ Δp 永远指向球心。
为什么会产生毛细现象?
液体对固体的润湿性能+弯曲液面具有附加压力两种作用共同导致的现象。
将很细的玻璃管插入水中,液体润湿管壁,θ<90使液面呈凹状,由于附加压力指向大气,使凹面下液体所承受的压力小于管外水平液面下液体受的压力,这时液体被压入管内,直至上升的液柱静压力与附加压力数值上相等为止,达到力的平衡即
Δp=ρgh
将很细的玻璃管插入水银中,液体不润湿管壁,θ>90 使液面呈凸状,附加压力指向液体内部,使凸面下液体所承受的压力大于管外水平液面下液体受的压力,这时管内液面下降,直至下降的液柱的静压力与附加压力相等为止 Δp=ρgh
3. 微小液滴的饱和蒸气压-开尔文公式
⑴ 凸面液体(如小液滴) ∴pr> p ,液滴愈小,饱和蒸气压愈大.
⑵ 凹面液面 pr
>1 Va=Vam 水平线段
中压 Va=Vambp/(1+bp) 曲线
6、 溶液表面
1.
2. 吉布斯吸附等温公式
吉布斯吸附等温式
(1) 定温下,若在溶剂中加入的溶质,使溶液的表面张力减小,即 dγ/dc<0,则 Γ>0,发生的是正吸附;
(2) 若加入溶质 dγ/dc=0,Γ=0无吸附作用。
3. 表面活性剂
表面活性剂的基本性质:加入少量即能显著降低溶液的表面张力。
在水溶液中,表面活性物质通常以两种形式出现。一种形式是溶液表面形成定向排列的吸附层,另一种方式是在溶液内部疏水基团相互靠拢分散在水中形成胶束。
表面层吸附达饱和的浓度,又是溶液内部形成一定形状胶束的浓度。我们把此浓度称为临界胶束浓度(CMC)。
表面活性剂的HLB值——亲水亲油平衡值 (Hydrophile-lipophile balance) 其数值的大小可表征表面活性物质亲水性或亲油性的大小。
第12章 胶体化学
一、难溶固体物质(比如AgI、Fe(OH)3)以微小的颗粒(1~1000 nm)分散在介质(水)中形成的分散体系叫胶体。
高度分散 (d=1~1000 nm) 的多相性与热力学的不稳定性是胶体体系的基本特征。
丁达尔现象是胶体体系特有的现象,它是区别溶胶与真溶液最简单的方法。丁达尔现象的实质是光的散射现象。
电泳:在外电场的作用下,胶体粒子在分散介质 中定向移动的现象,称为电泳。
电泳现象说明两点:一是胶体粒子带有电荷(向阴极移动,说明胶体粒子带正电荷;向阳极移动,胶体粒子带负电荷) ,二是胶体体系中分散相固相与分散介质液相可作相对运动。
二、胶体粒子带电有两个原因:离子吸附和解离
⑴ 离子吸附:固体表面从溶液中有选择性地吸附某种离子而带电。胶核吸附了某种离子,本身便带上了电荷,变为带电的胶核。
⑵ 解离:固体表面上的分子在溶液中发生解离而使其带电。
三、扩散双电层的产生
胶核由于吸附或电离作用变为带电的胶核,由于静电引力,吸引介质中持相反电荷的反离子,形成双电层;由于静电作用与扩散作用两种作用同时存在,两种作用达到平衡后,双电层的反离子不是整齐的排在胶核表面,而是呈一个扩散状态分布在溶液中。这样的双电层称为扩散双电层。
四、扩散双电层的结构
固定吸附层,斯特恩层:紧密的排列在带电胶核表面的反离子(水化离子)构成紧密层,由于静电引力与范德华力,使紧密层中的反离子与胶核表面结合很牢,在外电场的作用下,紧密层中的反离子也随固体粒子一起运动,其厚度约为分子直径的数量级。
扩散层:双电层中另一部分过剩的反离子松散的依附在胶体粒子的周围,形成扩散层。
紧密层与扩散层分界处形成了一个固-液两相相对运动的滑动面,AB面,称为斯特恩面。
胶粒的形成: 带电的胶核与紧密层中的反离子 ( 水化离子) 构成了胶粒 ( 即滑动面以内的带电体) 。
电动电势(ζ 电位):胶粒与本体溶液之间的电位差,即滑动面与本体溶液之间的电位之差。
五、胶团结构具有三个层次
1. 胶核 由分子、原子或离子聚集而成的固体颗粒称为胶核(d=1~1000 nm);
胶核从介质中选择性的吸附离子或表层发生电离而变成了带电的胶核;被吸附的离子应视为胶核的一部分。
胶核选择性吸附的规律(法扬斯-帕尼思规则):晶体表面对那些能与固体表面的离子生成难溶物或电离度很小化合物的离子具有优先吸附作用。
胶粒 滑动面以内的带电体
胶团 整个扩散层及其所包围的胶体粒子
书写胶团结构时,应注意电量平衡。滑动面两侧, 即胶粒所带的电量应与扩散层中的电量相同,胶团呈电中性。
由FeCl3水解制得Fe(OH)3溶胶得胶团结构。已知稳定剂为FeCl3。
六、溶胶稳定的原因
分散相粒子带电、溶剂化作用及布朗运动是溶胶三种重要的稳定原因。
七、溶胶的聚沉
1. 电解质的聚沉作用
适量的电解质加入,使胶核表面吸附离子而带电,对溶胶起稳定剂的作用,但如果电解质加入过多,尤其是加入含高价反离子的电解质,往往引起溶胶的聚沉。
电解质的聚沉作用原因是:
主要是因为电解质的浓度或价数增加时,都会压缩扩散层,使扩散层变薄,斥力势能降低,当电解质的浓度足够大时就会发生聚沉。
使某种溶胶发生明显的聚沉所需某种电解质的最小浓度,称为该电解质的聚沉值.
某电解质的聚沉值愈小,表明其聚沉能力愈大,因此将聚沉值的倒数称为聚沉能力。
2. 高分子溶液的聚沉作用
高分子化合物对溶胶之所以可发生聚沉作用, 原因有三个方面:
⑴ 吸附搭桥效应 一个长碳氢链的高分子化合物,可以同时被吸附在许多胶体的粒子上,起到搭桥的作用,把众多的胶粒联结起来,变成较大的聚集体而发生絮凝;
⑵ 电中和效应:如果高分子化合物是离子型的,且其离子的电荷与胶体粒子子电荷相反,那么此高分子化合物吸附在胶体粒子上可以中和胶粒上的表面电荷,使胶粒间的斥力变小,从而使溶胶发生聚沉。
(3) 脱水效应:高分子化合物对水有更强的亲和力,由于它的溶解与水化作用,使胶体粒子脱水,失去水化外壳而聚沉。