.\
第一章 分 式
1.1 分 式
1.1.1分式的概念
(第1课时)
教学目标
1 了解分式的概念。
2 通过具体情境感受分数的基本性质并类比得出分式的基本性质。
3理解分式有意义的条件。
教学重难点:
分式有意义的条件,分式值为零的条件
教学过程
情境导入新课
探究:
1把三个一样的苹果分给4位小朋友,每位小朋友分到多少苹果?你怎么分给他们? (交流讨论)
(1)每位小朋友分
(2)分法:
2 (1)把上面问题变为:把3个一样的苹果分给n(m>0)位小朋友,每位小朋友分到多少苹果?
用除法表示:,用分数表示为:,相等吗?()这里的n可以是实数吗?(n不能为0)
(2) 有什么区别?(后者分母含有字母)我们把前者叫分数,后者叫分式,什么叫分式呢?分式有没有和分数一样的性质?
这节课我们来学习-----分式的基本性质。(板书课题)
二 探究新知
1 分式的概念 填空:
(1 )如果小王用a元人民币买了b袋相同的瓜子,那么每袋瓜子的价格是______元。
(2)一个梯形木板的面积是6 ,如果梯形上底是am,下底是bm,那么这个梯形的高是________m.
(3) 两块面积分别为a亩,b亩的稻田m kg,n kg,这两块稻田平均每亩产稻谷________kg.
观察多项式:这些代数式有什么共同点特点?(分子分母都是整式,分母含有字母)
一般地,如果f、g分别表示两个整式,并且g中含有字母,那么代数式叫分式。
说明:分式的分子分母一般是多项式,单项式可以看成是只有一项的多项式。分母一定含有字母。
2 分式的基本性质
思考: 相等吗?相等吗?
如果a0, 那么,只要都意义,那么。
你认为分式和分数具有相同的性质吗?
分式的分子和分母都乘以或除以一个不等非零多项式,分式值不变。
分式的分子与分母约去共因式,分式的值不变。(约分)
用式子表示为:设h0,则
3 分式的值为零的条件和分式有意义的条件
例1 求分式的值,(1)x=3, (2)x=
思考:(1)要是分式的值为零,x应等于多少?要使分式的值为零,x应等于多少?
分式值为零的条件是什么?(分子为零,分母不等于零)
例2 当x取什么值时,分式(1)无意义,(2)有意义。
分式有意义的条件是什么?(分母不等于零)
三 课堂练习,巩固提高 P 3
四 反思小结,巩固提高 这节课你有什么收获?
判断一个式子是否是分式,不要看式子是否是A/ B的形式,关键要满足:
(1)分式的分母中必须含有字母.
(2)分母的值不能为零.若分母的值为零,则分式无意义.
判断一个式子是否是分式,不要看式子是否是A/ B的形式,关键要满足:
(1)分式的分母中必须含有字母.
(2)分母的值不能为零.若分母的值为零,则分式无意义.
五 作业 P6 A 1,2 B 1
1.1.2分式基本性质和约分
(第2课时)
教学目标
1 进一步掌握分式基本性质的应用。 2 通过探索掌握分式符号的变换法则。
教学重点、难点: 分式基本性质的应用和分式的变号法则
教学过程
一创设情境,导入新课 1 复习:分式基本性质是什么?用式子怎么表示?
分式的分子分母同乘以一个非零的多项式,分式值不变。
2 分式的值为零的条件是什么?分式有意义的条件是什么?
分式值为零的条件:分子为零,分母不为零。
分式有意义的条件是:分母不为零。
二 合作交流,探究新知
1 分式基本性质的应用
① 分式的约分---约去分子分母的公因式而把分式化简
例1 把下列分式中分子分母的公因式约去(1); (2)
分析:先要找到公因式,对于分子分母的公因式是什么?然后把分子分母分别写成公因式乘以一个适当的式子。
解(1)=-=-.
如果分子分母是多项式,还要注意先分解因式,再找公因式。
(2)==.
练一练:把下列分式中分子分母的公因式约去
(1); (2); (3); (4).
②分式符号的变换
思考:
(1)
(2)
估计学生会想到用除法法则来找到他们的关系,但还要引导学生利用分式的基本性质来找到他们的关系。
,因此:
,因此,
从上面的变换你发现了什么规律?请用你的话来表达?
分式的符号规律---同号为正,异号为负。
练一练: P 6 练习题
3 下面变形是否正确?为什么?如果不正确应怎样改正?
三、 反思小结,拓展提高 这几课你有什么收获?
1感受了分式基本性质的应用,2 会变换分式的符号。
四、作业P 7 A 3、4、5 6
教学后记:
1.2分式的乘法和除法
1.2.1分式的乘除法
(第3课时)
教学目标
1 通过类比得出分式的乘除法则,并会进行分式乘除运算。
2 了解约分、最简分式的概念,会对分式的结果约分。
重点、难点
重点:分式乘除法则及运用分式乘除法则进行计算 难点:分式乘除法的计算
教学过程
一创设情境,导入新课
1 分数的乘除法复习
计算:(1) 分数乘法、除法运算的法则是什么?
2 类比:把上面的分数改为分式:()怎样计算呢?
这节课我们来学习----分式的乘除法(板书课题)
二 合作交流,探究新知
1 分式的乘除法则
你能用语言表达分式的乘除法则吗?
分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分母的公因式。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2 分式乘除法则的初步应用及分式的约分和最简分式的概念
例1 计算: 学生独立完成,教师点评
点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。分子、分母没有公因式的分式叫最简分式。
(2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。
三 应用迁移,巩固提高(先约分化简,再乘除)
1 需要分解因式才能约分的分式乘除法
例2 计算:(1)
点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。
2 分式结果的化简及化简的意义
例3 化简:
点评:在进行分式运算的时候,一般要对要对结果化简,为什么要对分式的结果化简呢?
请你先完成下面问题:
例4 当x=5时,求的值。
现在你知道为什么要对分式的结果化简了吗?(把分式的结果先化简,可以使求分式的值变得简便)
四 课堂练习,巩固提高
1计算:
2化简:
3下面约分对吗?如果不对,指出错误原因,并改正
4 有这样一道题“计算:甲同学把x=2009错抄成2900”,但他的计算结果是正确的,你说这是怎么回事?
五 反思小结,拓展提高
六、作业:P 12 A组 1, 3 B 4
教学后记:
1.2.2分式的乘方
(第4课时)
教学目标
1 探索分式乘方的运算法则。
2 熟练运用乘方法则进行计算。
重点、难点
重点:分式乘方的法则和运算。
难点:分式乘方法则的推导过程的理解及利用分式乘方法则进行运算。
教学过程
一创设情境,导入新课
1 复习:分式乘除法则是什么?
2什么叫最简分式?
乘方导入
书本p10 上页做一做
用语言怎么表达呢 分式乘方等于分子、分母分别乘方。
三 应用迁移,巩固提高
1 分式乘方公式的应用
例1 计算:
强调每一步运用了哪些公式。
2 除法形式改为分式形式进行计算。
例2 计算:。
强调:除法形式改为分式,利用分式的运算性质进行计算给计算带来了方便。
3 分式乘方与分式乘法、除法的综合运用。
例3 计算:
4 整体思想
例4 已知:,求的值。
四 课题练习,巩固提高 P 12 练习1,2
补充: 先化简,再求值。,其中x=1.
五 反思小结,拓展提高 这几课你有什么收获?
(1) 分式乘法法则
(2) 分式乘方法则与分式乘除运算法则综合运用时的顺序。
六、作业:P 13 习题A 2; B 6
教学后记:
1.2分式的乘除法练习题
(第5课时)
一.选择题
1.约简分式后得[ ]
A.; B. ; C. ; D. .
2.约简分式后得[ ]
A.-a+b; B.-a-b; C.a-b; D.a+b.
3.分式,,,中,最简分式有[ ]
A.1个; B.2个; C.3个; D.4个.
4.计算①,②,③,④所得的结果中,是分式的是[ ]
A.只有①; B.有①、④; C.只有④; D.不同以上答案.
5.等于[ ]
A.; B.b2x; C.-; D.-.
6.5(a+1)2等于[ ]
A.a2+2a+1; B.5a2+10a+5; C.5a2-1; D. 5a2-5.
7.下列各式中,化简成最简分式后得的是[ ]
A.; B. ;
C.; D. .
8.当x>2时,化简的结果是[ ]
A.-1; B.1; C.1或-1; D.0.www.12999.com
9.若x等于它的倒数,则分式的值为[ ][来源:学科
A.-1; B.5; C.-1或5; D.-或4.
二.计算题
1.
2.
三.先化简,再求值
,其中a=,b=
四.已知y-2x=0,求代数式的值.
五.若=1,求x的取值范围.
参考答案
一.1.B;2.A;3.C;4.A;5.C;6.D ;7.B;8.B;9.C.
二. 1.; 2.1 . 三. ,5
四.; 五.x<3,且 xm.
1.3 整数指数幂
1.3.1同底数幂的除法
(第6课时)
教学过程
1 通过探索归纳同底数幂的除法法则。
2 熟练进行同底数幂的除法运算。
3 通过计算机单位的换算,使学生感受数学应用的价值,提高学习学生的热情。
重点、难点: 重 点:同底数幂的除法法则以及利用该法则进行计算。
难 点:同底数幂的除法法则的应用
教学过程
一 创设情境,导入新课
1 复习: 约分:① , ②, ③
复习约分的方法
2 引入
,所以,
如果把数字改为字母:一般地,设a0,m,n是正整数,且m>n,则这是什么运算呢?(同底数的除法) 这节课我们学习-----同底数的除法
二 合作交流,探究新知
1 同底数幂的除法法则
你能用语言表达同底数幂的除法法则吗? 同底数幂相除,底数不变,指数相减.
2同底数幂的除法法则初步运用
例1 计算:(1)(n是正整数),
例2 计算:(1),(2),
例3 计算:(1),(2)
练一练 P 16 练习题 1,2
三 应用迁移,巩固提高
例4 已知 ,则A=( )
例5 计算机硬盘的容量单位KB,MB,GB的换算关系,近视地表示成:
1KB≈1000B,1MB≈1000KB,1GB≈1000MB
(1) 硬盘总容量为40GB的计算机,大约能容纳多少字节?
(2) 1个汉字占2个字节,一本10万字的书占多少字节?
(3) 硬盘总容量为40GB的计算机,能容纳多少本10完字的书?
一本10万字的书约高1cm,如果把(3)小题中的书一本一本往上放,能堆多高? 练一练 (与珠穆朗玛峰的高度进行比较。)
1 已知求的值。 2 计算:
四 反思小结,巩固提高 这节课你有什么收获?
五 作业; 1 填空: (1) =____, (2) =_______
2 计算(1), (2), (3),
(4), (5) (6)
1.3.2 零次幂和负整数指数幂
(第7、8课时)
教学目标
1 通过探索掌握零次幂和负整数指数幂的意义。
2 会熟练进行零次幂和负整数指数幂的运算。
3 会用科学计数法表示绝对值较少的数。
4 让学生感受从特殊到一般是数学研究的一个重要方法。
教学重点、难点
重点:零次幂和负整数指数幂的公式推导和应用,科学计数法表示绝对值绝对值较少的数。
难点:零次幂和负整数指数幂的理解
教学过程
一 创设情境,导入新课
1 同底数的幂相除的法则是什么?用式子怎样表示?用语言怎样叙述?
2 这这个公式中,要求m>n,如果m=n,m
展开阅读全文
相关搜索