《2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第2章 函数、导数及其应用 第9节 函数模型及其应用学案 理 北师大版.doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第2章 函数、导数及其应用 第9节 函数模型及其应用学案 理 北师大版.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第九节函数模型及其应用考纲传真(教师用书独具)1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用(对应学生用书第29页)基础知识填充1常见的几种函数模型(1)一次函数模型:ykxb(k0)(2)反比例函数模型:yb(k,b为常数且k0)(3)二次函数模型:yax2bxc(a,b,c为常数,a0)(4)指数函数模型:yabxc(a,b,c为常数,b0,b1,a0)(5)对数函数模型:ymlogaxn(m,n,a为常数,a0,a1,m
2、0)(6)幂函数模型:yaxnb(a0)2三种函数模型之间增长速度的比较函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢因n而异图像的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当xx0时,有logaxxnax3.解函数应用问题的步骤(四步八字)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还
3、原:将数学问题还原为实际问题以上过程用框图291表示如下:图291知识拓展“对勾”函数形如f(x)x(a0)的函数模型称为“对勾”函数模型:(1)该函数在(,和,)上单调递增,在,0)和(0,上单调递减(2)当x0时,x时取最小值2,当x0时,x时取最大值2.基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)函数y2x的函数值比yx2的函数值大()(2)幂函数增长比直线增长更快()(3)不存在x0,使axlogax0.()(4)f(x)x2,g(x)2x,h(x)log2x,当x(4,)时,恒有h(x)f(x)g(x)()答案(1)(2)(3)(4)2(教材改编)
4、已知某种动物繁殖量y(只)与时间x(年)的关系为yalog3(x1),设这种动物第2年有100只,到第8年它们发展到()A100只B200只C300只D400只B由题意知100alog3(21),a100,y100log3(x1),当x8时,y100log3 9200.3某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是()A减少7.84%B增加7.84%C减少9.5%D不增不减A设某商品原来价格为a,依题意得:a(10.2)2(10.2)2a1.220.820.921 6a,(0.921 61)a0.078 4a,所以四年后的价格与原来价格比较,
5、减少7.84%.4若一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则燃烧剩下的高度h(cm)与燃烧时间t(h)的函数关系用图像表示为()B由题意h205t(0t4),其图像为B5某市生产总值连续两年持续增加第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为_1设年平均增长率为x,则(1x)2(1p)(1q),所以x1.(对应学生用书第30页)用函数图像刻画变化过程(1)某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图像正确的是()(2)如图292所示的四个容器高度都相同,
6、将水从容器顶部一个孔中以相同的速度注入其中,注满为止用容器下面所对的图像表示该容器中水面的高度h和时间t之间的关系,其中正确的有()图292A1个 B2个 C3个 D4个(1)A(2)C(1)前3年年产量的增长速度越来越快,说明呈高速增长,只有A、C图像符合要求,而后3年年产量保持不变,产品的总产量应呈直线上升,故选A(2)将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h和时间t之间的关系可以从高度随时间的增长速度上反映出来,(1)中的增长应该是匀速的,故下面的图像不正确;(2)中的增长速度是越来越慢的,正确;(3)中的增长速度是先快后慢再快,正确;(4)中的增长速度是先慢后快再
7、慢,也正确,故(2)(3)(4)正确选C规律方法判断函数图像与实际问题中两变量变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.跟踪训练设甲、乙两地的距离为a(a0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为() 【导学号:79140066】Dy为
8、“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C又因为小王在乙地休息10分钟,故排除B,故选D应用所给函数模型解决实际问题(1)某航空公司规定,乘飞机所携带行李的重量(kg)与其运费(元)由如图293所示的一次函数图像确定,那么乘客可免费携带行李的重量最大为_ kg.图293(2)一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为yaeb t(cm3),经过8 min后发现容器内还有一半的沙子,则再经过_ min,容器中的沙子只有开始时的八分之一(1)19(2)16(1)由图像可求得一次函数的解析式为y30x570,令30x5700,
9、解得x19.(2)当t0时,ya,当t8时,yae8ba,所以e8b,容器中的沙子只有开始时的八分之一时,即yaeb ta,eb t(e8 b)3e24b,则t24,所以再经过16 min.规律方法求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.易错警示:解决实际问题时要注意自变量的取值范围.跟踪训练(2017西城区二模)某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x)已知某家庭2017年前三个月的煤气费如下表: 【导学号:79140067】月份用气量煤气费一
10、月份4 m34元二月份25 m314元三月份35 m319元若四月份该家庭使用了20 m3的煤气,则其煤气费为()A11.5元B11元C10.5元D10元A根据题意可知f(4)C4,f(25)CB(25A)14,f(35)CB(35A)19,解得A5,B,C4,所以f(x)所以f(20)4(205)11.5,故选A构建函数模型解决实际问题(2017山西孝义模考)为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超出1元,租不出的自行车就增
11、加3辆为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)(1)求函数yf(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?解(1)当x6时,y50x115.令50x1150,解得x2.3.xN,3x6,xN.当x6时,y503(x6)x115.令503(x6)x1150,有3x268x1150.又xN,6x20(xN),故y(2)对于y50x115(3x6,xN),显然当x6时,ymax185.对于y3x268x
12、1153(6x20,xN),当x11时,ymax270.又270185,当每辆自行车的日租金定为11元时,才能使一日的净收入最多规律方法构建函数模型解决实际问题的常见类型与求解方法(1)构建二次函数模型,常用配方法、数形结合、分类讨论思想求解.(2)构建分段函数模型,应用分段函数分段求解的方法.(3)构建f(x)x(a0)模型,常用基本不等式、导数等知识求解.易错警示:求解过程中不要忽视实际问题是对自变量的限制.跟踪训练(2016四川高考)某公司为激励创新,计划逐年加大研发资金投入,若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.120.05,lg 1.30.11,lg 20.30)()A2018年B2019年C2020年D2021年B设2015年后的第n年该公司投入的研发资金开始超过200万元由130(112%)n200,得1.12n,两边取常用对数,得n,n4,从2019年开始,该公司投入的研发资金开始超过200万元