《2019高三数学文北师大版一轮教师用书:选修4-5 第1节 绝对值不等式 .doc》由会员分享,可在线阅读,更多相关《2019高三数学文北师大版一轮教师用书:选修4-5 第1节 绝对值不等式 .doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、选修45不等式选讲第一节绝对值不等式考纲传真1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|ab|a|b|(a,bR),|ac|ab|bc|(a,b,cR).2.会利用绝对值的几何意义求解以下类型的不等式:|axb|c;|axb|c;|xa|xb|C(对应学生用书第164页) 基础知识填充1绝对值三角不等式定理1:如果a,b是实数,则|ab|a|b|,当且仅当ab0时,等号成立定理2:如果a,b,c是实数,那么|ac|ab|bc|,当且仅当(ab)(bc)0时,等号成立2绝对值不等式的解法(1)含绝对值的不等式|x|a的解法:不等式a0a0a0|x|ax|xa或xax
2、R|x0R(2)|axb|c,|axb|c(c0)型不等式的解法:|axb|ccaxbc;|axb|caxbc或axbC(3)|xa|xb|c,|xa|xb|c(c0)型不等式的解法利用绝对值不等式的几何意义求解;利用零点分段法求解;构造函数,利用函数的图像求解基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)|xa|xb|的几何意义是表示数轴上的点x到点a,b的距离之和()(2)不等式|a|b|ab|等号成立的条件是ab0.()(3)不等式|ab|a|b|等号成立的条件是ab0.()(4)当ab0时,|ab|a|b|成立()答案(1)(2)(3)(4)2(教材改
3、编)若关于x的不等式|ax2|3的解集为,则实数a_.3依题意,知a0.又|ax2|33ax23,1ax5.由于|ax2|3的解集为,a0,且,则a3.3(教材改编)若关于x的不等式|a|x1|x2|存在实数解,则实数a的取值范围是_(,33,)由于|x1|x2|(x1)(x2)|3,|x1|x2|的最小值为3,要使|a|x1|x2|有解,只需|a|3,a3或a3.4解不等式x|2x3|2.解当x时,原不等式化为3x32,3分解得x.6分当x时,原不等式化为x32,解得x5.8分综上,原不等式的解集是.10分5(2016江苏高考)设a0,|x1|,|y2|,求证:|2xy4|A 【导学号:00
4、090376】证明因为|x1|,|y2|,所以|2xy4|2(x1)(y2)|2|x1|y2|1的解集 【导学号:00090377】图1解(1)由题意得f(x)3分故yf(x)的图像如图所示6分(2)由f(x)的函数表达式及图像可知,当f(x)1时,可得x1或x3;当f(x)1时,可得x或x5.8分故f(x)1的解集为x|1x3,f(x)1的解集为.所以|f(x)|1的解集为.10分规律方法1.本题用零点分段法画出分段函数的图像,结合图像的直观性求出不等式的解集,体现数形结合思想的应用2解绝对值不等式的关键是去绝对值符号,零点分段法操作程序是:找零点,分区间,分段讨论此外还常利用绝对值的几何意
5、义求解变式训练1(2017全国卷)已知函数f(x)x2ax4,g(x)|x1|x1|.(1)当a1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围解(1)当a1时,不等式f(x)g(x)等价于x2x|x1|x1|40.当x1时,式化为x2x40,从而1x.所以f(x)g(x)的解集为.(2)当x1,1时,g(x)2,所以f(x)g(x)的解集包含1,1,等价于当x1,1时,f(x)2.又f(x)在1,1的最小值必为f(1)与f(1)之一,所以f(1)2且f(1)2,得1a1.所以a的取值范围为1,1含绝对值的不等式的应用对于任意的实数a(a0)
6、和b,不等式|ab|ab|M|a|恒成立,记实数M的最大值是m.(1)求m的值;(2)解不等式|x1|x2|m.解(1)不等式|ab|ab|M|a|恒成立,即M对于任意的实数a(a0)和b恒成立,只要左边恒小于或等于右边的最小值.2分因为|ab|ab|(ab)(ab)|2|a|,当且仅当(ab)(ab)0时等号成立,|a|b|时,2成立,也就是的最小值是2,即m2.5分(2)|x1|x2|2.法一:利用绝对值的意义得:x.10分法二:当x1时,不等式为(x1)(x2)2,解得x,所以x的取值范围是x1.当1x2时,不等式为(x1)(x2)2,得x的取值范围是1x2.8分当x2时,原不等式为(x
7、1)(x2)2,2x.综上可知,不等式的解集是.10分规律方法1.(1)利用绝对值不等式性质定理要注意等号成立的条件:当ab0时,|ab|a|b|;当ab0时,|ab|a|b|;当(ab)(bc)0时,|ac|ab|bc|.(2)对于求y|xa|xb|或y|xa|xb|型的最值问题利用含绝对值不等式更方便2第(2)问易出现解集不全或错误对于含绝对值的不等式,不论是分段去绝对值符号还是利用几何意义,都要不重不漏变式训练2对于任意实数a,b,已知|ab|1,|2a1|1,且恒有|4a3b2|m,求实数m的取值范围解因为|ab|1,|2a1|1,所以|3a3b|3,4分所以|4a3b2|3a3b|3
8、6,8分则|4a3b2|的最大值为6,所以m|4a3b2|max6,m的取值范围是6,)10分绝对值不等式的综合应用(2018哈尔滨模拟)已知函数f(x)|x1|2|xa|,a0.(1)当a1时,求不等式f(x)1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围. 【导学号:00090378】解(1)当a1时,f(x)1化为|x1|2|x1|10.当x1时,不等式化为x40,无解;当1x0,解得x0,解得1x2.所以f(x)1的解集为.4分(2)由题设可得f(x)所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A,B(2a1,0),C(a,a1)因此ABC的面
9、积S|AB|(a1)(a1)2.8分由题设得(a1)26,故a2.所以a的取值范围为(2,).10分规律方法1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法2第(2)问求解要抓住三点:(1)分段讨论,去绝对值符号,化f(x)为分段函数;(2)数形结合求ABC的三个顶点坐标,进而得出ABC的面积;(3)解不等式求a的取值范围变式训练3(2016全国卷)已知函数f(x)|2xa|A(1)当a2时,求不等式f(x)6的解集;(2)设函数g(x)|2x1|.当xR时,恒有f(x)g(x)3,求实数a的取值范围解(1)当a2时,f(x)|2x2|2.解不等式|2x2|26得1x3.因此f(x)6的解集为x|1x3.4分(2)当xR时,f(x)g(x)|2xa|a|12x|(2xa)(12x)|a|1a|a,6分当x时等号成立,所以当xR时,f(x)g(x)3等价于|1a|a3.8分当a1时,等价于1aa3,无解当a1时,等价于a1a3,解得a2.所以a的取值范围是2,).10分